000878682 001__ 878682
000878682 005__ 20240712113046.0
000878682 0247_ $$2doi$$a10.1039/C9CP05128G
000878682 0247_ $$2ISSN$$a1463-9076
000878682 0247_ $$2ISSN$$a1463-9084
000878682 0247_ $$2altmetric$$aaltmetric:70565034
000878682 0247_ $$2pmid$$apmid:31746869
000878682 0247_ $$2WOS$$aWOS:000501356000011
000878682 037__ $$aFZJ-2020-03000
000878682 082__ $$a540
000878682 1001_ $$0P:(DE-HGF)0$$aSchwab, C.$$b0
000878682 245__ $$aBulk and grain boundary Li-diffusion in dense LiMn2O4 pellets by means of isotope exchange and ToF-SIMS analysis
000878682 260__ $$aCambridge$$bRSC Publ.$$c2019
000878682 3367_ $$2DRIVER$$aarticle
000878682 3367_ $$2DataCite$$aOutput Types/Journal article
000878682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604585988_4698
000878682 3367_ $$2BibTeX$$aARTICLE
000878682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878682 3367_ $$00$$2EndNote$$aJournal Article
000878682 520__ $$aLithium diffusion in LiMn2O4 pellets is studied by means of isotope exchange and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). A 6Li-enriched film deposited by Pulsed Laser Deposition (PLD) on a dense LiMn2O4 pellet with natural abundance of lithium isotopes is used to study the tracer diffusion of lithium. The measured profiles are analyzed by numerical models describing the 6Li tracer diffusion from the film into the pellet. Experiments in the Harrison type B regime of diffusion kinetics allow for the distinction and simultaneous determination of bulk and grain boundary diffusion coefficients. Changing the experimental conditions to reach Harrison type A behavior yields effective diffusion coefficients for lithium tracer diffusion in LiMn2O4. Activation energies for bulk and grain boundary diffusion were obtained from experiments at different temperatures. Our values are critically compared to previous studies.
000878682 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000878682 588__ $$aDataset connected to CrossRef
000878682 7001_ $$0P:(DE-HGF)0$$aHöweling, A.$$b1
000878682 7001_ $$0P:(DE-Juel1)165951$$aWindmüller, Anna$$b2
000878682 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, J.$$b3$$eCorresponding author
000878682 7001_ $$0P:(DE-Juel1)139534$$aMöller, Sören$$b4
000878682 7001_ $$0P:(DE-HGF)0$$aBinder, J. R.$$b5
000878682 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b6
000878682 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b7
000878682 7001_ $$0P:(DE-HGF)0$$aMartin, M.$$b8$$eCorresponding author
000878682 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP05128G$$gVol. 21, no. 47, p. 26066 - 26076$$n47$$p26066 - 26076$$tPhysical chemistry, chemical physics$$v21$$x1463-9084$$y2019
000878682 8564_ $$uhttps://juser.fz-juelich.de/record/878682/files/c9cp05128g.pdf$$yRestricted
000878682 8564_ $$uhttps://juser.fz-juelich.de/record/878682/files/c9cp05128g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000878682 909CO $$ooai:juser.fz-juelich.de:878682$$pVDB
000878682 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000878682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000878682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139534$$aForschungszentrum Jülich$$b4$$kFZJ
000878682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b6$$kFZJ
000878682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b7$$kFZJ
000878682 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
000878682 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000878682 9141_ $$y2020
000878682 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-01-10$$wger
000878682 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-10$$wger
000878682 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-01-10$$wger
000878682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2018$$d2020-01-10
000878682 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000878682 920__ $$lyes
000878682 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000878682 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000878682 980__ $$ajournal
000878682 980__ $$aVDB
000878682 980__ $$aI:(DE-Juel1)IEK-1-20101013
000878682 980__ $$aI:(DE-Juel1)IEK-12-20141217
000878682 980__ $$aUNRESTRICTED
000878682 981__ $$aI:(DE-Juel1)IMD-4-20141217
000878682 981__ $$aI:(DE-Juel1)IMD-2-20101013