000878684 001__ 878684
000878684 005__ 20210130005729.0
000878684 0247_ $$2doi$$a10.1039/D0TC01780A
000878684 0247_ $$2ISSN$$a2050-7526
000878684 0247_ $$2ISSN$$a2050-7534
000878684 0247_ $$2Handle$$a2128/25585
000878684 0247_ $$2altmetric$$aaltmetric:88358893
000878684 0247_ $$2WOS$$aWOS:000563340200003
000878684 037__ $$aFZJ-2020-03002
000878684 082__ $$a530
000878684 1001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b0$$eCorresponding author
000878684 245__ $$aCharge-transfer engineering strategies for tailored ionic conductivity at oxide interfaces
000878684 260__ $$aLondon $$bRSC$$c2020
000878684 3367_ $$2DRIVER$$aarticle
000878684 3367_ $$2DataCite$$aOutput Types/Journal article
000878684 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599570155_32472
000878684 3367_ $$2BibTeX$$aARTICLE
000878684 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878684 3367_ $$00$$2EndNote$$aJournal Article
000878684 520__ $$aExploiting the electronic charge-transfer across oxide interfaces has emerged as a versatile tool to tailor the electronic and magnetic properties of oxides. Such charge-transfer concepts have been applied to drive insulating oxides into metallic states, to trigger magnetism in non-magnetic oxides, and to render gate-tunable low-dimensional superconductors. While the richness in the electronic and magnetic properties of these systems is the main focus of research, the implications for the ionic transport at oxide interfaces have not received much attention so far. In this communication, we propose that charge-transfer strategies can also be applied to boost ionic charge carrier concentrations at interfaces by orders of magnitude. Based on numerical space-charge modeling, we will illustrate how the ‘p-type’ charge-transfer predicted between SrO-terminated SrTiO3 and LaAlO3 may foster 2-dimensional oxygen ion conduction at the interface. The ion conduction is effectively separated from impurity dopants, which may allow large concentrations of oxygen vacancies to be achieved in the absence of trapping phenomena. The interface promises high ionic conductivity with nanoscale confinement, potentially allowing the design of field-tunable ionic devices.
000878684 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000878684 588__ $$aDataset connected to CrossRef
000878684 7001_ $$00000-0003-0048-7595$$aChristensen, D. V.$$b1
000878684 7001_ $$00000-0002-5718-7924$$aPryds, N.$$b2
000878684 773__ $$0PERI:(DE-600)2702245-6$$a10.1039/D0TC01780A$$gVol. 8, no. 33, p. 11354 - 11359$$n33$$p11354 - 11359$$tJournal of materials chemistry / C Materials for optical and electronic devices$$v8$$x2050-7534$$y2020
000878684 8564_ $$uhttps://juser.fz-juelich.de/record/878684/files/Gunkel_et_JMaterChemC.pdf$$yOpenAccess
000878684 8564_ $$uhttps://juser.fz-juelich.de/record/878684/files/Gunkel_et_JMaterChemC.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878684 909CO $$ooai:juser.fz-juelich.de:878684$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878684 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b0$$kFZJ
000878684 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000878684 9141_ $$y2020
000878684 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000878684 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM C : 2018$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM C : 2018$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878684 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2020-02-28$$wger
000878684 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-28$$wger
000878684 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-28
000878684 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-28
000878684 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000878684 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000878684 980__ $$ajournal
000878684 980__ $$aVDB
000878684 980__ $$aUNRESTRICTED
000878684 980__ $$aI:(DE-Juel1)PGI-7-20110106
000878684 980__ $$aI:(DE-82)080009_20140620
000878684 9801_ $$aFullTexts