000878685 001__ 878685
000878685 005__ 20210130005729.0
000878685 0247_ $$2doi$$a10.1063/5.0013965
000878685 0247_ $$2Handle$$a2128/25587
000878685 0247_ $$2WOS$$aWOS:000560032100002
000878685 037__ $$aFZJ-2020-03003
000878685 082__ $$a600
000878685 1001_ $$00000-0003-0399-1869$$aMueller, Michael P.$$b0$$eCorresponding author
000878685 245__ $$aCation diffusion in polycrystalline thin films of monoclinic HfO 2 deposited by atomic layer deposition
000878685 260__ $$aMelville, NY$$bAIP Publ.$$c2020
000878685 3367_ $$2DRIVER$$aarticle
000878685 3367_ $$2DataCite$$aOutput Types/Journal article
000878685 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599570716_32472
000878685 3367_ $$2BibTeX$$aARTICLE
000878685 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878685 3367_ $$00$$2EndNote$$aJournal Article
000878685 520__ $$aThough present in small amounts and migrating at low rates, intrinsic cation defects play a central role in governing the operational lifetime of oxide-ion conducting materials through slow degradation processes such as interdiffusion, kinetic demixing, grain growth, and creep. In this study, a new experimental approach to characterizing the behavior of such slow-moving, minority defects is presented. Diffusion is probed in samples with a constant cation-defect concentration well above the equilibrium values. This approach is applied to monoclinic hafnium dioxide, m-HfO2. To this end, nanocrystalline thin films of m-HfO2 were prepared by atomic layer deposition. Diffusion experiments with ZrO2 as a diffusion source were performed in the temperature range 1173 ≤ T/K ≤ 1323 in air. The Zr diffusion profiles obtained subsequently by secondary ion mass spectrometry exhibited the following two features: the first feature was attributed to slow bulk diffusion and the second was attributed to combined fast grain-boundary diffusion and slow bulk diffusion. The activation enthalpy of Zr diffusion in bulk HfO2 was found to be (2.1 ± 0.2) eV. This result is consistent with the density-functional-theory calculations of hafnium-vacancy migration in m-HfO2, which yield values of ∼2 eV for a specific path. The activation enthalpy of the grain-boundary diffusion of (2.1 ± 0.3) eV is equal to that for bulk diffusion. This behavior is interpreted in terms of enhanced cation diffusion along space-charge layers
000878685 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000878685 588__ $$aDataset connected to CrossRef
000878685 7001_ $$0P:(DE-Juel1)180168$$aPingen, Katrin$$b1
000878685 7001_ $$0P:(DE-Juel1)165704$$aHardtdegen, Alexander$$b2
000878685 7001_ $$0P:(DE-Juel1)169457$$aAussen, Stephan$$b3
000878685 7001_ $$0P:(DE-HGF)0$$aKindsmueller, Andreas$$b4
000878685 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b5
000878685 7001_ $$00000-0001-7721-4128$$aDe Souza, Roger A.$$b6
000878685 773__ $$0PERI:(DE-600)2722985-3$$a10.1063/5.0013965$$gVol. 8, no. 8, p. 081104 -$$n8$$p081104 -$$tAPL materials$$v8$$x2166-532X$$y2020
000878685 8564_ $$uhttps://juser.fz-juelich.de/record/878685/files/M_M%C3%BCller_SFB917_APLMaterials-8_2020_Cation%20diffusion%20in%20polycrystalline%20thin%20films%20of%20monoclinic%20HfO2.pdf$$yOpenAccess
000878685 8564_ $$uhttps://juser.fz-juelich.de/record/878685/files/M_M%C3%BCller_SFB917_APLMaterials-8_2020_Cation%20diffusion%20in%20polycrystalline%20thin%20films%20of%20monoclinic%20HfO2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878685 909CO $$ooai:juser.fz-juelich.de:878685$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165704$$aForschungszentrum Jülich$$b2$$kFZJ
000878685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169457$$aForschungszentrum Jülich$$b3$$kFZJ
000878685 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b5$$kFZJ
000878685 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000878685 9141_ $$y2020
000878685 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-16
000878685 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878685 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPL MATER : 2018$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878685 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000878685 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878685 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878685 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000878685 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000878685 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000878685 980__ $$ajournal
000878685 980__ $$aVDB
000878685 980__ $$aUNRESTRICTED
000878685 980__ $$aI:(DE-Juel1)PGI-7-20110106
000878685 980__ $$aI:(DE-Juel1)PGI-10-20170113
000878685 980__ $$aI:(DE-82)080009_20140620
000878685 9801_ $$aFullTexts