Hauptseite > Publikationsdatenbank > Cation diffusion in polycrystalline thin films of monoclinic HfO 2 deposited by atomic layer deposition > print |
001 | 878685 | ||
005 | 20210130005729.0 | ||
024 | 7 | _ | |a 10.1063/5.0013965 |2 doi |
024 | 7 | _ | |a 2128/25587 |2 Handle |
024 | 7 | _ | |a WOS:000560032100002 |2 WOS |
037 | _ | _ | |a FZJ-2020-03003 |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Mueller, Michael P. |0 0000-0003-0399-1869 |b 0 |e Corresponding author |
245 | _ | _ | |a Cation diffusion in polycrystalline thin films of monoclinic HfO 2 deposited by atomic layer deposition |
260 | _ | _ | |a Melville, NY |c 2020 |b AIP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599570716_32472 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Though present in small amounts and migrating at low rates, intrinsic cation defects play a central role in governing the operational lifetime of oxide-ion conducting materials through slow degradation processes such as interdiffusion, kinetic demixing, grain growth, and creep. In this study, a new experimental approach to characterizing the behavior of such slow-moving, minority defects is presented. Diffusion is probed in samples with a constant cation-defect concentration well above the equilibrium values. This approach is applied to monoclinic hafnium dioxide, m-HfO2. To this end, nanocrystalline thin films of m-HfO2 were prepared by atomic layer deposition. Diffusion experiments with ZrO2 as a diffusion source were performed in the temperature range 1173 ≤ T/K ≤ 1323 in air. The Zr diffusion profiles obtained subsequently by secondary ion mass spectrometry exhibited the following two features: the first feature was attributed to slow bulk diffusion and the second was attributed to combined fast grain-boundary diffusion and slow bulk diffusion. The activation enthalpy of Zr diffusion in bulk HfO2 was found to be (2.1 ± 0.2) eV. This result is consistent with the density-functional-theory calculations of hafnium-vacancy migration in m-HfO2, which yield values of ∼2 eV for a specific path. The activation enthalpy of the grain-boundary diffusion of (2.1 ± 0.3) eV is equal to that for bulk diffusion. This behavior is interpreted in terms of enhanced cation diffusion along space-charge layers |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Pingen, Katrin |0 P:(DE-Juel1)180168 |b 1 |
700 | 1 | _ | |a Hardtdegen, Alexander |0 P:(DE-Juel1)165704 |b 2 |
700 | 1 | _ | |a Aussen, Stephan |0 P:(DE-Juel1)169457 |b 3 |
700 | 1 | _ | |a Kindsmueller, Andreas |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Hoffmann-Eifert, Susanne |0 P:(DE-Juel1)130717 |b 5 |
700 | 1 | _ | |a De Souza, Roger A. |0 0000-0001-7721-4128 |b 6 |
773 | _ | _ | |a 10.1063/5.0013965 |g Vol. 8, no. 8, p. 081104 - |0 PERI:(DE-600)2722985-3 |n 8 |p 081104 - |t APL materials |v 8 |y 2020 |x 2166-532X |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/878685/files/M_M%C3%BCller_SFB917_APLMaterials-8_2020_Cation%20diffusion%20in%20polycrystalline%20thin%20films%20of%20monoclinic%20HfO2.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/878685/files/M_M%C3%BCller_SFB917_APLMaterials-8_2020_Cation%20diffusion%20in%20polycrystalline%20thin%20films%20of%20monoclinic%20HfO2.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:878685 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)165704 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169457 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)130717 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-01-16 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b APL MATER : 2018 |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-16 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-01-16 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-01-16 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-16 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|