000878686 001__ 878686
000878686 005__ 20230426083221.0
000878686 0247_ $$2doi$$a10.1103/PhysRevB.102.035307
000878686 0247_ $$2ISSN$$a0163-1829
000878686 0247_ $$2ISSN$$a0556-2805
000878686 0247_ $$2ISSN$$a1050-2947
000878686 0247_ $$2ISSN$$a1094-1622
000878686 0247_ $$2ISSN$$a1095-3795
000878686 0247_ $$2ISSN$$a1098-0121
000878686 0247_ $$2ISSN$$a1538-4446
000878686 0247_ $$2ISSN$$a1538-4489
000878686 0247_ $$2ISSN$$a1550-235X
000878686 0247_ $$2ISSN$$a2469-9950
000878686 0247_ $$2ISSN$$a2469-9969
000878686 0247_ $$2ISSN$$a2469-9977
000878686 0247_ $$2Handle$$a2128/25588
000878686 0247_ $$2WOS$$aWOS:000550579000004
000878686 037__ $$aFZJ-2020-03004
000878686 082__ $$a530
000878686 1001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b0$$ufzj
000878686 245__ $$aComprehensive model for the electronic transport in Pt/SrTi O 3 analog memristive devices
000878686 260__ $$aWoodbury, NY$$bInst.$$c2020
000878686 3367_ $$2DRIVER$$aarticle
000878686 3367_ $$2DataCite$$aOutput Types/Journal article
000878686 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675945397_18642
000878686 3367_ $$2BibTeX$$aARTICLE
000878686 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878686 3367_ $$00$$2EndNote$$aJournal Article
000878686 520__ $$aThe presented study considers the electronic conduction across a SrTiO3/Pt Schottky electrode in a resistive switching cell. It is generally accepted that the resistive switching effect is based on the migration of oxygen vacancies, which can be understood as mobile donors. In the experimental approach, a Nb:SrTiO3/SrTiO3/Pt resistive switching cell is fabricated and tested for its electronic and resistive switching characteristics. Using different voltage stimuli, several analog resistance states are realized. Afterwards, the electrical transport properties under different applied voltages and temperatures are measured for each analog resistive state. To gain physical insight into the analog resistive switching a numerical simulation model is developed. The electronic conduction is calculated based on the single band transport theory and a phonon scattering theory accounting for polar material systems. The simulation model allows testing of the conduction in these resistive switching cells by using different doping (oxygen vacancy) concentrations. Combining the simulation model and the experiment, it delivers a comprehensive physical description for the conduction. By means of simulation, the energy resolved current transport across the Schottky barrier is analyzed. It forms a peaklike distribution, originating from the limited thermal excitation and tunneling probability across the SrTiO3/Pt Schottky barrier. Thus, the conduction processes in all states are identified as a balance between a thermally assisted tunneling effect and a phonon dominated bulk transport. Applying this understanding, the resistive switching effect is reduced to a modification of the Schottky tunnel barrier, based on the rearrangement of oxygen vacancies. Thus a low vacancy concentration leads to a high and wide tunneling barrier, which is reduced and shortened for higher concentrations. All resistance states in between are understood as an adjustment of intermediate tunneling barriers. The physical insights leading to the realization of analog resistance states is mandatory to realize new types of neuromorphic computing circuits based on resistive switching devices. Furthermore, the obtained results could be easily transferred to other systems where a static doping concentration applies. This makes the results highly interesting to other applications in the field of electronic oxides and Schottky barrier dominated systems.
000878686 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000878686 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x1
000878686 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000878686 542__ $$2Crossref$$i2020-07-21$$uhttps://link.aps.org/licenses/aps-default-license
000878686 588__ $$aDataset connected to CrossRef
000878686 7001_ $$0P:(DE-Juel1)159254$$aBäumer, Christoph$$b1
000878686 7001_ $$00000-0003-2820-9677$$aWiefels, Stefan$$b2
000878686 7001_ $$00000-0002-5962-418X$$aHennen, Tyler$$b3
000878686 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4$$ufzj
000878686 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b5
000878686 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b6$$ufzj
000878686 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b7$$ufzj
000878686 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.102.035307$$bAmerican Physical Society (APS)$$d2020-07-21$$n3$$p035307$$tPhysical Review B$$v102$$x2469-9950$$y2020
000878686 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.102.035307$$gVol. 102, no. 3, p. 035307$$n3$$p035307$$tPhysical review / B$$v102$$x2469-9950$$y2020
000878686 8564_ $$uhttps://juser.fz-juelich.de/record/878686/files/Funck_PhysRevB.102.035307_2020_Comprehensive%20model.pdf$$yOpenAccess
000878686 8564_ $$uhttps://juser.fz-juelich.de/record/878686/files/Funck_PhysRevB.102.035307_2020_Comprehensive%20model.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878686 909CO $$ooai:juser.fz-juelich.de:878686$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b0$$kFZJ
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159254$$aForschungszentrum Jülich$$b1$$kFZJ
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b5$$kFZJ
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b6$$kFZJ
000878686 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b7$$kFZJ
000878686 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000878686 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x1
000878686 9141_ $$y2020
000878686 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000878686 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000878686 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2018$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878686 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000878686 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000878686 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000878686 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000878686 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000878686 980__ $$ajournal
000878686 980__ $$aVDB
000878686 980__ $$aI:(DE-Juel1)PGI-7-20110106
000878686 980__ $$aI:(DE-Juel1)PGI-10-20170113
000878686 980__ $$aI:(DE-82)080009_20140620
000878686 980__ $$aUNRESTRICTED
000878686 9801_ $$aFullTexts
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200900375
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TED.2012.2218607
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4903470
000878686 999C5 $$1Y.-B. Kim$$2Crossref$$oY.-B. Kim Proceedings of the 2011 Symposium on VLSI Technology–Digest of Technical Papers, Honolulu, HI, USA 2011$$tProceedings of the 2011 Symposium on VLSI Technology–Digest of Technical Papers, Honolulu, HI, USA$$y2011
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3070
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.50.04DD11
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1155/2019/6724018
000878686 999C5 $$1Z. Wei$$2Crossref$$oZ. Wei Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA 2008$$tProceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA$$y2008
000878686 999C5 $$1Z. Wei$$2Crossref$$oZ. Wei Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA 2011$$tProceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA$$y2011
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl401283q
000878686 999C5 $$1V. Havel$$2Crossref$$oV. Havel Proceedings of the Silicon Nanoelectronics Worshop SNW 2016, Hawaii, Honolulu 2016$$tProceedings of the Silicon Nanoelectronics Worshop SNW 2016, Hawaii, Honolulu$$y2016
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C8FD00117K
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/22/48/485203
000878686 999C5 $$1B. Govoreanu$$2Crossref$$oB. Govoreanu Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA 2011$$tProceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA$$y2011
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41565-018-0302-0
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/22/25/254027
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201700294
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2008.160
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/TED.2018.2849872
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1557/opl.2014.562
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C9NR06624A
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.jpclett.7b03028
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms12398
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201700212
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acsami.8b09068
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41578-019-0159-3
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6528/ab2084
000878686 999C5 $$1D. Ielmini$$2Crossref$$9-- missing cx lookup --$$a10.1002/9783527680870$$y2016
000878686 999C5 $$1M. Aono$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-030-34875-5$$y2020
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201203680
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/22/25/254023
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcis.2017.10.113
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ssi.2016.09.001
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/LED.2012.2188775
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature14441
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3389/fnins.2013.00186
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201705914
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl904092h
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201800062
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/acs.nanolett.8b03023
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4919697
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/aelm.201500233
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201800957
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01397171
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01451751
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.98.414
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.112.216601
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.161.822
000878686 999C5 $$1S. M. Sze$$2Crossref$$oS. M. Sze Physics of Semiconductor Devices 2007$$tPhysics of Semiconductor Devices$$y2007
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.4940129
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C6RA05668G
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/C7RA00242D
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3462067
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4944842
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201102254
000878686 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/LED.2006.880660