001     878686
005     20230426083221.0
024 7 _ |a 10.1103/PhysRevB.102.035307
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4446
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2469-9977
|2 ISSN
024 7 _ |a 2128/25588
|2 Handle
024 7 _ |a WOS:000550579000004
|2 WOS
037 _ _ |a FZJ-2020-03004
082 _ _ |a 530
100 1 _ |a Funck, Carsten
|0 P:(DE-Juel1)165703
|b 0
|u fzj
245 _ _ |a Comprehensive model for the electronic transport in Pt/SrTi O 3 analog memristive devices
260 _ _ |a Woodbury, NY
|c 2020
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675945397_18642
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The presented study considers the electronic conduction across a SrTiO3/Pt Schottky electrode in a resistive switching cell. It is generally accepted that the resistive switching effect is based on the migration of oxygen vacancies, which can be understood as mobile donors. In the experimental approach, a Nb:SrTiO3/SrTiO3/Pt resistive switching cell is fabricated and tested for its electronic and resistive switching characteristics. Using different voltage stimuli, several analog resistance states are realized. Afterwards, the electrical transport properties under different applied voltages and temperatures are measured for each analog resistive state. To gain physical insight into the analog resistive switching a numerical simulation model is developed. The electronic conduction is calculated based on the single band transport theory and a phonon scattering theory accounting for polar material systems. The simulation model allows testing of the conduction in these resistive switching cells by using different doping (oxygen vacancy) concentrations. Combining the simulation model and the experiment, it delivers a comprehensive physical description for the conduction. By means of simulation, the energy resolved current transport across the Schottky barrier is analyzed. It forms a peaklike distribution, originating from the limited thermal excitation and tunneling probability across the SrTiO3/Pt Schottky barrier. Thus, the conduction processes in all states are identified as a balance between a thermally assisted tunneling effect and a phonon dominated bulk transport. Applying this understanding, the resistive switching effect is reduced to a modification of the Schottky tunnel barrier, based on the rearrangement of oxygen vacancies. Thus a low vacancy concentration leads to a high and wide tunneling barrier, which is reduced and shortened for higher concentrations. All resistance states in between are understood as an adjustment of intermediate tunneling barriers. The physical insights leading to the realization of analog resistance states is mandatory to realize new types of neuromorphic computing circuits based on resistive switching devices. Furthermore, the obtained results could be easily transferred to other systems where a static doping concentration applies. This makes the results highly interesting to other applications in the field of electronic oxides and Schottky barrier dominated systems.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 1
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 2
542 _ _ |i 2020-07-21
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bäumer, Christoph
|0 P:(DE-Juel1)159254
|b 1
700 1 _ |a Wiefels, Stefan
|0 0000-0003-2820-9677
|b 2
700 1 _ |a Hennen, Tyler
|0 0000-0002-5962-418X
|b 3
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 4
|u fzj
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 5
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 6
|u fzj
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 7
|u fzj
773 1 8 |a 10.1103/physrevb.102.035307
|b American Physical Society (APS)
|d 2020-07-21
|n 3
|p 035307
|3 journal-article
|2 Crossref
|t Physical Review B
|v 102
|y 2020
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.102.035307
|g Vol. 102, no. 3, p. 035307
|0 PERI:(DE-600)2844160-6
|n 3
|p 035307
|t Physical review / B
|v 102
|y 2020
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/878686/files/Funck_PhysRevB.102.035307_2020_Comprehensive%20model.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/878686/files/Funck_PhysRevB.102.035307_2020_Comprehensive%20model.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:878686
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165703
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)159254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130717
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 1
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-24
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2018
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-24
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-24
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-24
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-24
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-24
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1002/adma.200900375
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/TED.2012.2218607
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4903470
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Y.-B. Kim
|y 2011
|2 Crossref
|t Proceedings of the 2011 Symposium on VLSI Technology–Digest of Technical Papers, Honolulu, HI, USA
|o Y.-B. Kim Proceedings of the 2011 Symposium on VLSI Technology–Digest of Technical Papers, Honolulu, HI, USA 2011
999 C 5 |a 10.1038/nmat3070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JJAP.50.04DD11
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1155/2019/6724018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Z. Wei
|y 2008
|2 Crossref
|t Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA
|o Z. Wei Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA 2008
999 C 5 |1 Z. Wei
|y 2011
|2 Crossref
|t Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA
|o Z. Wei Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA 2011
999 C 5 |a 10.1021/nl401283q
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. Havel
|y 2016
|2 Crossref
|t Proceedings of the Silicon Nanoelectronics Worshop SNW 2016, Hawaii, Honolulu
|o V. Havel Proceedings of the Silicon Nanoelectronics Worshop SNW 2016, Hawaii, Honolulu 2016
999 C 5 |a 10.1039/C8FD00117K
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/22/48/485203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 B. Govoreanu
|y 2011
|2 Crossref
|t Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA
|o B. Govoreanu Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA 2011
999 C 5 |a 10.1038/s41565-018-0302-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/22/25/254027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/aelm.201700294
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2008.160
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/TED.2018.2849872
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1557/opl.2014.562
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C9NR06624A
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.jpclett.7b03028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms12398
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201700212
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acsami.8b09068
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s41578-019-0159-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1361-6528/ab2084
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/9783527680870
|1 D. Ielmini
|2 Crossref
|9 -- missing cx lookup --
|y 2016
999 C 5 |a 10.1007/978-3-030-34875-5
|1 M. Aono
|2 Crossref
|9 -- missing cx lookup --
|y 2020
999 C 5 |a 10.1002/adma.201203680
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/22/25/254023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jcis.2017.10.113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ssi.2016.09.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/LED.2012.2188775
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature14441
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3389/fnins.2013.00186
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201705914
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl904092h
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/aelm.201800062
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/acs.nanolett.8b03023
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4919697
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/aelm.201500233
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201800957
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01397171
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01451751
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.98.414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.216601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.161.822
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. M. Sze
|y 2007
|2 Crossref
|t Physics of Semiconductor Devices
|o S. M. Sze Physics of Semiconductor Devices 2007
999 C 5 |a 10.1116/1.4940129
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C6RA05668G
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/C7RA00242D
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3462067
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4944842
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201102254
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/LED.2006.880660
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21