001     878687
005     20210130005730.0
024 7 _ |a 10.1039/D0NR01847C
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 2128/26070
|2 Handle
024 7 _ |a altmetric:84188294
|2 altmetric
024 7 _ |a pmid:32543637
|2 pmid
024 7 _ |a WOS:000545599900040
|2 WOS
037 _ _ |a FZJ-2020-03005
082 _ _ |a 600
100 1 _ |a Dippel, Ann-Christin
|0 0000-0003-1735-9215
|b 0
|e Corresponding author
245 _ _ |a Evolution of short-range order in chemically and physically grown thin film bilayer structures for electronic applications
260 _ _ |a Cambridge
|c 2020
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604673287_2064
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional thin films are commonly integrated in electronic devices as part of a multi-layer architecture. Metal/oxide/metal structures e.g. in resistive switching memory and piezoelectric microelectrochemical devices are relevant applications. The films are mostly fabricated from the vapour phase or by solution deposition. Processing conditions with a limited thermal budget typically yield nanocrystalline or amorphous layers. For these aperiodic materials, the structure is described in terms of the local atomic order on the length scale of a few chemical bonds up to several nanometres. Previous structural studies of the short-range order in thin films have addressed the simple case of single coatings on amorphous substrates. By contrast, this work demonstrates how to probe the local structure of two stacked functional layers by means of grazing incidence total X-ray scattering and pair distribution function (PDF) analysis. The key to separating the contributions of the individual thin films is the variation of the incidence angle below the critical angle of total external reflection, In this way, structural information was obtained for functional oxides on textured electrodes, i.e. PbZr0.53O0.47O3 on Pt[111] and HfO2 on TiN, as well as HfO2–TiOx bilayers. For these systems, the transformations from disordered phases into periodic structures via thermal teatment are described. These examples highlight the opportunity to develop a detailed understanding of structural evolution during the fabrication of real thin film devices using the PDF technique.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gutowski, Olof
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Klemeyer, Lars
|0 0000-0003-1103-8103
|b 2
700 1 _ |a Boettger, Ulrich
|0 P:(DE-Juel1)130551
|b 3
700 1 _ |a Berg, Fenja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schneller, Theodor
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hardtdegen, Alexander
|0 P:(DE-Juel1)165704
|b 6
700 1 _ |a Aussen, Stephan
|0 P:(DE-Juel1)169457
|b 7
700 1 _ |a Hoffmann-Eifert, Susanne
|0 P:(DE-Juel1)130717
|b 8
700 1 _ |a Zimmermann, Martin v.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1039/D0NR01847C
|g Vol. 12, no. 24, p. 13103 - 13112
|0 PERI:(DE-600)2515664-0
|n 24
|p 13103 - 13112
|t Nanoscale
|v 12
|y 2020
|x 2040-3372
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/878687/files/d0nr01847c.pdf
856 4 _ |y Published on 2020-06-16. Available in OpenAccess from 2021-06-16.
|u https://juser.fz-juelich.de/record/878687/files/nanoscaleManuscript_rev.pdf
856 4 _ |y Published on 2020-06-16. Available in OpenAccess from 2021-06-16.
|u https://juser.fz-juelich.de/record/878687/files/si_rev.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/878687/files/d0nr01847c.pdf?subformat=pdfa
856 4 _ |y Published on 2020-06-16. Available in OpenAccess from 2021-06-16.
|x pdfa
|u https://juser.fz-juelich.de/record/878687/files/nanoscaleManuscript_rev.pdf?subformat=pdfa
856 4 _ |y Published on 2020-06-16. Available in OpenAccess from 2021-06-16.
|x pdfa
|u https://juser.fz-juelich.de/record/878687/files/si_rev.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878687
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)169457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130717
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2018
|d 2020-02-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-02-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)PTJ-NMT-20090406
|k PTJ-NMT
|l Neue Materialien und Chemie
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PTJ-NMT-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21