000878689 001__ 878689
000878689 005__ 20240712084454.0
000878689 0247_ $$2doi$$a10.1002/adts.202000116
000878689 0247_ $$2Handle$$a2128/25830
000878689 0247_ $$2WOS$$aWOS:000570297100001
000878689 037__ $$aFZJ-2020-03007
000878689 082__ $$a050
000878689 1001_ $$0P:(DE-Juel1)180703$$aHartnagel, Paula$$b0
000878689 245__ $$aUnderstanding the Light‐Intensity Dependence of the Short‐Circuit Current of Organic Solar Cells
000878689 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2020
000878689 3367_ $$2DRIVER$$aarticle
000878689 3367_ $$2DataCite$$aOutput Types/Journal article
000878689 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601969199_3366
000878689 3367_ $$2BibTeX$$aARTICLE
000878689 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878689 3367_ $$00$$2EndNote$$aJournal Article
000878689 520__ $$aIn organic solar cells, bimolecular recombination is a key factor limiting the device performance and creating the need for characterization. Light‐intensity‐dependent short‐circuit current density measurements are a frequently used tool to qualitatively analyze bimolecular recombination in a device. When applying a 0D model, bimolecular recombination is expected to reduce the otherwise linear correlation of the short‐circuit current density Jsc and the light intensity Φ to a sublinear trend. It is shown by numerical simulations that the slope of the Jsc–Φ curve is affected by the recombination mechanism (direct or via traps), the spatial distribution of charge carriers and—in thick solar cells—by space charge effects. Only the combination of these effects allows proper explanation of the different cases, some of which cannot be explained in a simple 0D device model.
000878689 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000878689 588__ $$aDataset connected to CrossRef
000878689 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b1$$eCorresponding author
000878689 773__ $$0PERI:(DE-600)2894557-8$$a10.1002/adts.202000116$$gp. 2000116 -$$n10$$p2000116$$tAdvanced theory and simulations$$v3$$x2513-0390$$y2020
000878689 8564_ $$uhttps://juser.fz-juelich.de/record/878689/files/adts.202000116.pdf$$yOpenAccess
000878689 8564_ $$uhttps://juser.fz-juelich.de/record/878689/files/adts.202000116.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878689 8767_ $$92020-07-16$$d2020-09-04$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000878689 909CO $$ooai:juser.fz-juelich.de:878689$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000878689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180703$$aForschungszentrum Jülich$$b0$$kFZJ
000878689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b1$$kFZJ
000878689 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000878689 9141_ $$y2020
000878689 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878689 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878689 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878689 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-02-26
000878689 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878689 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878689 920__ $$lyes
000878689 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000878689 9801_ $$aAPC
000878689 9801_ $$aFullTexts
000878689 980__ $$ajournal
000878689 980__ $$aVDB
000878689 980__ $$aUNRESTRICTED
000878689 980__ $$aI:(DE-Juel1)IEK-5-20101013
000878689 980__ $$aAPC
000878689 981__ $$aI:(DE-Juel1)IMD-3-20101013