000878692 001__ 878692
000878692 005__ 20230310131315.0
000878692 0247_ $$2doi$$a10.5194/bg-17-4375-2020
000878692 0247_ $$2ISSN$$a1726-4170
000878692 0247_ $$2ISSN$$a1726-4189
000878692 0247_ $$2Handle$$a2128/25591
000878692 0247_ $$2WOS$$aWOS:000566779200001
000878692 037__ $$aFZJ-2020-03010
000878692 082__ $$a550
000878692 1001_ $$00000-0003-0342-9171$$aVilà-Guerau de Arellano, Jordi$$b0$$eCorresponding author
000878692 245__ $$aCloudRoots: integration of advanced instrumental techniques and process modelling of sub-hourly and sub-kilometre land–atmosphere interactions
000878692 260__ $$aKatlenburg-Lindau [u.a.]$$bCopernicus$$c2020
000878692 3367_ $$2DRIVER$$aarticle
000878692 3367_ $$2DataCite$$aOutput Types/Journal article
000878692 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601268839_11066
000878692 3367_ $$2BibTeX$$aARTICLE
000878692 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878692 3367_ $$00$$2EndNote$$aJournal Article
000878692 520__ $$aThe CloudRoots field experiment was designed to obtain a comprehensive observational dataset that includes soil, plant, and atmospheric variables to investigate the interaction between a heterogeneous land surface and its overlying atmospheric boundary layer at the sub-hourly and sub-kilometre scale. Our findings demonstrate the need to include measurements at leaf level to better understand the relations between stomatal aperture and evapotranspiration (ET) during the growing season at the diurnal scale. Based on these observations, we obtain accurate parameters for the mechanistic representation of photosynthesis and stomatal aperture. Once the new parameters are implemented, the model reproduces the stomatal leaf conductance and the leaf-level photosynthesis satisfactorily. At the canopy scale, we find a consistent diurnal pattern on the contributions of plant transpiration and soil evaporation using different measurement techniques. From highly resolved vertical profile measurements of carbon dioxide (CO2) and other state variables, we infer a profile of the CO2 assimilation in the canopy with non-linear variations with height. Observations taken with a laser scintillometer allow us to quantify the non-steadiness of the surface turbulent fluxes during the rapid changes driven by perturbation of photosynthetically active radiation by cloud flecks. More specifically, we find 2 min delays between the cloud radiation perturbation and ET. To study the relevance of advection and surface heterogeneity for the land–atmosphere interaction, we employ a coupled surface–atmospheric conceptual model that integrates the surface and upper-air observations made at different scales from leaf to the landscape. At the landscape scale, we calculate a composite sensible heat flux by weighting measured fluxes with two different land use categories, which is consistent with the diurnal evolution of the boundary layer depth. Using sun-induced fluorescence measurements, we also quantify the spatial variability of ET and find large variations at the sub-kilometre scale around the CloudRoots site. Our study shows that throughout the entire growing season, the wide variations in stomatal opening and photosynthesis lead to large diurnal variations of plant transpiration at the leaf, plant, canopy, and landscape scales. Integrating different advanced instrumental techniques with modelling also enables us to determine variations of ET that depend on the scale where the measurement were taken and on the plant growing stage.
000878692 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878692 536__ $$0G:(GEPRIS)15232683$$aDFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation (15232683)$$c15232683$$x1
000878692 536__ $$0G:(DE-Juel1)BMBF-01LN1313A$$aIDAS-GHG - Instrumental and Data-driven Approaches to Source-Partitioning of Greenhouse Gas Fluxes: Comparison, Combination, Advancement (BMBF-01LN1313A)$$cBMBF-01LN1313A$$fNachwuchsgruppen Globaler Wandel 4+1$$x2
000878692 588__ $$aDataset connected to CrossRef
000878692 7001_ $$0P:(DE-Juel1)180909$$aNey, Patrizia$$b1$$ufzj
000878692 7001_ $$0P:(DE-HGF)0$$aHartogensis, Oscar$$b2
000878692 7001_ $$0P:(DE-HGF)0$$ade Boer, Hugo$$b3
000878692 7001_ $$0P:(DE-HGF)0$$avan Diepen, Kevin$$b4
000878692 7001_ $$0P:(DE-Juel1)169928$$aEmin, Dzhaner$$b5
000878692 7001_ $$0P:(DE-HGF)0$$ade Groot, Geiske$$b6
000878692 7001_ $$0P:(DE-Juel1)159313$$aKlosterhalfen, Anne$$b7
000878692 7001_ $$0P:(DE-HGF)0$$aLangensiepen, Matthias$$b8
000878692 7001_ $$0P:(DE-Juel1)130098$$aMatveeva, Maria$$b9
000878692 7001_ $$0P:(DE-HGF)0$$aMiranda-García, Gabriela$$b10
000878692 7001_ $$00000-0003-3614-8544$$aMoene, Arnold F.$$b11
000878692 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b12
000878692 7001_ $$00000-0002-6688-8968$$aRöckmann, Thomas$$b13
000878692 7001_ $$00000-0002-1999-5664$$aAdnew, Getachew$$b14
000878692 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b15
000878692 7001_ $$0P:(DE-Juel1)145658$$aRothfuss, Youri$$b16
000878692 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b17
000878692 773__ $$0PERI:(DE-600)2158181-2$$a10.5194/bg-17-4375-2020$$gVol. 17, no. 17, p. 4375 - 4404$$n17$$p4375 - 4404$$tBiogeosciences$$v17$$x1726-4189$$y2020
000878692 8564_ $$uhttps://juser.fz-juelich.de/record/878692/files/bg-17-4375-2020.pdf$$yOpenAccess
000878692 8564_ $$uhttps://juser.fz-juelich.de/record/878692/files/bg-17-4375-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878692 909CO $$ooai:juser.fz-juelich.de:878692$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180909$$aForschungszentrum Jülich$$b1$$kFZJ
000878692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b12$$kFZJ
000878692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b15$$kFZJ
000878692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145658$$aForschungszentrum Jülich$$b16$$kFZJ
000878692 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b17$$kFZJ
000878692 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878692 9141_ $$y2020
000878692 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-15
000878692 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878692 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOGEOSCIENCES : 2018$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878692 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-15
000878692 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-15
000878692 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-15
000878692 920__ $$lyes
000878692 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878692 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000878692 980__ $$ajournal
000878692 980__ $$aVDB
000878692 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878692 980__ $$aI:(DE-Juel1)IBG-2-20101118
000878692 980__ $$aUNRESTRICTED
000878692 9801_ $$aFullTexts