000878699 001__ 878699
000878699 005__ 20240712100839.0
000878699 0247_ $$2doi$$a10.5194/acp-20-8763-2020
000878699 0247_ $$2ISSN$$a1680-7316
000878699 0247_ $$2ISSN$$a1680-7324
000878699 0247_ $$2Handle$$a2128/25594
000878699 0247_ $$2altmetric$$aaltmetric:86361531
000878699 0247_ $$2WOS$$aWOS:000555471200001
000878699 037__ $$aFZJ-2020-03017
000878699 082__ $$a550
000878699 1001_ $$0P:(DE-HGF)0$$aHauck, Marius$$b0$$eCorresponding author
000878699 245__ $$aA convolution of observational and model data to estimate age of air spectra in the northern hemispheric lower stratosphere
000878699 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000878699 3367_ $$2DRIVER$$aarticle
000878699 3367_ $$2DataCite$$aOutput Types/Journal article
000878699 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599574034_32472
000878699 3367_ $$2BibTeX$$aARTICLE
000878699 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878699 3367_ $$00$$2EndNote$$aJournal Article
000878699 520__ $$aDerivation of mean age of air (AoA) and age spectra from atmospheric measurements remains a challenge and often requires output from atmospheric models. This study tries to minimize the direct influence of model output and presents an extension and application of a previously established inversion method to derive age spectra from mixing ratios of long- and short-lived trace gases. For a precise description of cross-tropopause transport processes, the inverse method is extended to incorporate air entrainment into the stratosphere across the tropical and extratropical tropopause. We first use simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) to provide a general proof of concept of the extended principle in a controllable and consistent environment, where the method is applied to an idealized set of 10 trace gases with predefined constant lifetimes and compared to reference model age spectra. In the second part of the study we apply the extended inverse method to atmospheric measurements of multiple long- and short-lived trace gases measured aboard the High Altitude and Long Range (HALO) research aircraft during the two research campaigns POLSTRACC–GW-LCYCLE–SALSA (PGS) and Wave-driven Isentropic Exchange (WISE). As some of the observed species undergo significant loss processes in the stratosphere, a Monte Carlo simulation is introduced to retrieve age spectra and chemical lifetimes in stepwise fashion and to account for the large uncertainties. Results show that in the idealized model scenario the inverse method retrieves age spectra robustly on annual and seasonal scales. The extension to multiple entry regions proves reasonable as our CLaMS simulations reveal that in the model between 50 % and 70 % of air in the lowermost stratosphere has entered through the extratropical tropopause (30–90∘ N and S) on annual average. When applied to observational data of PGS and WISE, the method derives age spectra and mean AoA with meaningful spatial distributions and quantitative range, yet large uncertainties. Results indicate that entrainment of fresh tropospheric air across both the extratropical and tropical tropopause peaked prior to both campaigns, but with lower mean AoA for WISE than PGS data. The ratio of moments for all retrieved age spectra for PGS and WISE is found to range between 0.52 and 2.81 years. We conclude that the method derives reasonable and consistent age spectra using observations of chemically active trace gases. Our findings might contribute to an improved assessment of transport with age spectra in future studies.
000878699 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000878699 588__ $$aDataset connected to CrossRef
000878699 7001_ $$00000-0002-1004-0861$$aBönisch, Harald$$b1
000878699 7001_ $$0P:(DE-HGF)0$$aHoor, Peter$$b2
000878699 7001_ $$0P:(DE-HGF)0$$aKeber, Timo$$b3
000878699 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b4
000878699 7001_ $$00000-0002-1380-3684$$aSchuck, Tanja J.$$b5
000878699 7001_ $$00000-0003-0557-3935$$aEngel, Andreas$$b6
000878699 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-8763-2020$$gVol. 20, no. 14, p. 8763 - 8785$$n14$$p8763 - 8785$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000878699 8564_ $$uhttps://juser.fz-juelich.de/record/878699/files/Hauck_2020_acp.pdf$$yOpenAccess
000878699 8564_ $$uhttps://juser.fz-juelich.de/record/878699/files/Hauck_2020_acp.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878699 909CO $$ooai:juser.fz-juelich.de:878699$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878699 9101_ $$0I:(DE-HGF)0$$60000-0002-1004-0861$$aExternal Institute$$b1$$kExtern
000878699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b4$$kFZJ
000878699 9101_ $$0I:(DE-HGF)0$$60000-0002-1380-3684$$aExternal Institute$$b5$$kExtern
000878699 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000878699 9141_ $$y2020
000878699 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000878699 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878699 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878699 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000878699 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000878699 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000878699 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000878699 9801_ $$aFullTexts
000878699 980__ $$ajournal
000878699 980__ $$aVDB
000878699 980__ $$aUNRESTRICTED
000878699 980__ $$aI:(DE-Juel1)IEK-7-20101013
000878699 981__ $$aI:(DE-Juel1)ICE-4-20101013