001     878726
005     20240709094407.0
024 7 _ |a 10.1016/j.jeurceramsoc.2020.06.035
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 2128/25601
|2 Handle
024 7 _ |a WOS:000564729500001
|2 WOS
037 _ _ |a FZJ-2020-03026
082 _ _ |a 660
100 1 _ |a Zeng, Fanlin
|0 P:(DE-Juel1)173865
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Phase and microstructural characterizations for Ce0.8Gd0.2O2--FeCo2O4 dual phase oxygen transport membranes
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599584238_3001
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dual phase oxygen transport membranes were prepared via solid state reaction at 1200 ℃. The sintered membranes were characterized via X-ray diffraction, back scattered electron microscopy and electron backscatter diffraction, and associated with image analysis and calculations to quantify phase compositions and microstructural features including volume fractions, grain sizes, and contiguity. The characterizations reveal a multi-phase system containing Ce1-xGdxO2-δ’ (x ≈ 0.1) (CGO10), and FeyCo3-yO4 (0.2 < y < 1.2) (FCO), CoO and Gd0.85Ce0.15Fe0.75Co0.25O3 (GCFCO) in the sintered membranes. In addition, a novel model is utilized to assess the evolution of the ambipolar conductivity with respect to microstructural features. Both experimental and calculated results indicate that if the grain sizes of all phases in the composites are similar, the optimal ambipolar conductivity is reached with a volume ratio of ionic conducting phase to electronic conducting phase close to 4:1. Meanwhile, the GCFCO phase dominates the effective electronic conductivity.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
|u fzj
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 2
|u fzj
700 1 _ |a Krüger, Manja
|0 P:(DE-Juel1)172056
|b 3
|u fzj
700 1 _ |a Winnubst, Louis
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
700 1 _ |a Meulenberg, Wilhelm A.
|0 P:(DE-Juel1)129637
|b 6
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2020.06.035
|g Vol. 40, no. 15, p. 5646 - 5652
|0 PERI:(DE-600)2013983-4
|n 15
|p 5646 - 5652
|t Journal of the European Ceramic Society
|v 40
|y 2020
|x 0955-2219
856 4 _ |y Published on 2020-06-19. Available in OpenAccess from 2022-06-19.
|u https://juser.fz-juelich.de/record/878726/files/Phase%20and%20microstructural%20characterizations%20for%20Ce0.8Gd0.2O2-%CE%B4-FeCo2O4.pdf
856 4 _ |y Published on 2020-06-19. Available in OpenAccess from 2022-06-19.
|x pdfa
|u https://juser.fz-juelich.de/record/878726/files/Phase%20and%20microstructural%20characterizations%20for%20Ce0.8Gd0.2O2-%CE%B4-FeCo2O4.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878726
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21