000878735 001__ 878735
000878735 005__ 20240712100852.0
000878735 0247_ $$2doi$$a10.5194/gmd-13-1635-2020
000878735 0247_ $$2ISSN$$a1991-959X
000878735 0247_ $$2ISSN$$a1991-9603
000878735 0247_ $$2Handle$$a2128/25617
000878735 0247_ $$2altmetric$$aaltmetric:78654365
000878735 0247_ $$2WOS$$aWOS:000593770700001
000878735 037__ $$aFZJ-2020-03035
000878735 082__ $$a550
000878735 1001_ $$00000-0003-3827-5950$$aRighi, Mattia$$b0$$eCorresponding author
000878735 245__ $$aCoupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol–climate model
000878735 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020
000878735 3367_ $$2DRIVER$$aarticle
000878735 3367_ $$2DataCite$$aOutput Types/Journal article
000878735 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599638976_19835
000878735 3367_ $$2BibTeX$$aARTICLE
000878735 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878735 3367_ $$00$$2EndNote$$aJournal Article
000878735 520__ $$aA new cloud microphysical scheme including a detailed parameterization for aerosol-driven ice formation in cirrus clouds is implemented in the global ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry–climate model and coupled to the third generation of the Modal Aerosol Dynamics model for Europe adapted for global applications (MADE3) aerosol submodel. The new scheme is able to consistently simulate three regimes of stratiform clouds – liquid, mixed-, and ice-phase (cirrus) clouds – considering the activation of aerosol particles to form cloud droplets and the nucleation of ice crystals. In the cirrus regime, it allows for the competition between homogeneous and heterogeneous freezing for the available supersaturated water vapor, taking into account different types of ice-nucleating particles, whose specific ice-nucleating properties can be flexibly varied in the model setup. The new model configuration is tuned to find the optimal set of parameters that minimizes the model deviations with respect to observations. A detailed evaluation is also performed comparing the model results for standard cloud and radiation variables with a comprehensive set of observations from satellite retrievals and in situ measurements. The performance of EMAC-MADE3 in this new coupled configuration is in line with similar global coupled models and with other global aerosol models featuring ice cloud parameterizations. Some remaining discrepancies, namely a high positive bias in liquid water path in the Northern Hemisphere and overestimated (underestimated) cloud droplet number concentrations over the tropical oceans (in the extratropical regions), which are both a common problem in these kinds of models, need to be taken into account in future applications of the model. To further demonstrate the readiness of the new model system for application studies, an estimate of the anthropogenic aerosol effective radiative forcing (ERF) is provided, showing that EMAC-MADE3 simulates a relatively strong aerosol-induced cooling but within the range reported in the Intergovernmental Panel on Climate Change (IPCC) assessments.
000878735 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000878735 588__ $$aDataset connected to CrossRef
000878735 7001_ $$0P:(DE-HGF)0$$aHendricks, Johannes$$b1
000878735 7001_ $$00000-0001-8885-3785$$aLohmann, Ulrike$$b2
000878735 7001_ $$00000-0003-3815-0007$$aBeer, Christof Gerhard$$b3
000878735 7001_ $$0P:(DE-HGF)0$$aHahn, Valerian$$b4
000878735 7001_ $$0P:(DE-HGF)0$$aHeinold, Bernd$$b5
000878735 7001_ $$0P:(DE-HGF)0$$aHeller, Romy$$b6
000878735 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b7
000878735 7001_ $$00000-0002-9771-4733$$aPonater, Michael$$b8
000878735 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b9
000878735 7001_ $$00000-0003-3700-3232$$aTegen, Ina$$b10
000878735 7001_ $$00000-0001-8925-7731$$aVoigt, Christiane$$b11
000878735 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-13-1635-2020$$gVol. 13, no. 3, p. 1635 - 1661$$n3$$p1635 - 1661$$tGeoscientific model development$$v13$$x1991-9603$$y2020
000878735 8564_ $$uhttps://juser.fz-juelich.de/record/878735/files/Righi_GMD_2020_gmd-2019-212.pdf$$yOpenAccess
000878735 8564_ $$uhttps://juser.fz-juelich.de/record/878735/files/gmd-13-1635-2020.pdf$$yOpenAccess
000878735 8564_ $$uhttps://juser.fz-juelich.de/record/878735/files/Righi_GMD_2020_gmd-2019-212.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878735 8564_ $$uhttps://juser.fz-juelich.de/record/878735/files/gmd-13-1635-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878735 909CO $$ooai:juser.fz-juelich.de:878735$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000878735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b7$$kFZJ
000878735 9101_ $$0I:(DE-HGF)0$$60000-0002-9771-4733$$aExternal Institute$$b8$$kExtern
000878735 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b9$$kFZJ
000878735 9101_ $$0I:(DE-HGF)0$$60000-0003-3700-3232$$aExternal Institute$$b10$$kExtern
000878735 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000878735 9141_ $$y2020
000878735 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-05
000878735 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878735 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2018$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGEOSCI MODEL DEV : 2018$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878735 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-05
000878735 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-05
000878735 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-05
000878735 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000878735 9801_ $$aFullTexts
000878735 980__ $$ajournal
000878735 980__ $$aVDB
000878735 980__ $$aUNRESTRICTED
000878735 980__ $$aI:(DE-Juel1)IEK-7-20101013
000878735 981__ $$aI:(DE-Juel1)ICE-4-20101013