000878775 001__ 878775
000878775 005__ 20240715202020.0
000878775 0247_ $$2doi$$a10.1002/joc.6717
000878775 0247_ $$2ISSN$$a0196-1748
000878775 0247_ $$2ISSN$$a0899-8418
000878775 0247_ $$2ISSN$$a1097-0088
000878775 0247_ $$2ISSN$$a2374-7412
000878775 0247_ $$2Handle$$a2128/26856
000878775 0247_ $$2altmetric$$aaltmetric:85081996
000878775 0247_ $$2WOS$$aWOS:000550663400001
000878775 037__ $$aFZJ-2020-03037
000878775 082__ $$a550
000878775 1001_ $$00000-0003-1665-1337$$aLavin‐Gullon, Alvaro$$b0$$eCorresponding author
000878775 245__ $$aInternal variability versus multi‐physics uncertainty in a regional climate model
000878775 260__ $$aChichester [u.a.]$$bWiley$$c2021
000878775 3367_ $$2DRIVER$$aarticle
000878775 3367_ $$2DataCite$$aOutput Types/Journal article
000878775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721024954_11706
000878775 3367_ $$2BibTeX$$aARTICLE
000878775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878775 3367_ $$00$$2EndNote$$aJournal Article
000878775 520__ $$aIn a recent study, Coppola et al. assessed the ability of an ensemble of convection‐permitting models (CPM) to simulate deep convection using three case studies. The ensemble exhibited strong discrepancies between models, which were attributed to various factors. In order to shed some light on the issue, we quantify in this article the uncertainty associated to different physical parameterizations from that of using different initial conditions, often referred to as the internal variability. For this purpose, we establish a framework to quantify both signals and we compare them for upper atmospheric circulation and near‐surface variables. The analysis is carried out in the context of the CORDEX Flagship Pilot Study on Convective phenomena at high resolution over Europe and the Mediterranean, in which the intermediate RCM WRF simulations that serve to drive the CPM are run several times with different parameterizations. For atmospheric circulation (geopotential height), the sensitivity induced by multi‐physics and the internal variability show comparable magnitudes and a similar spatial distribution pattern. For 2‐m temperature and 10‐m wind, the simulations with different parameterizations show larger differences than those launched with different initial conditions. The systematic effect over 1 year shows distinct patterns for the multi‐physics and the internal variability. Therefore, the general lesson of this study is that internal variability should be analysed in order to properly distinguish the impact of other sources of uncertainty, especially for short‐term sensitivity simulations.
000878775 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000878775 536__ $$0G:(DE-Juel1)jjsc39_20190501$$aConvection-permitting regional climate modelling: Contribution to WCRP CORDEX Flagship Pilot Study ensemble over Europe and joint analysis of water cycle processes and properties (jjsc39_20190501)$$cjjsc39_20190501$$fConvection-permitting regional climate modelling: Contribution to WCRP CORDEX Flagship Pilot Study ensemble over Europe and joint analysis of water cycle processes and properties$$x1
000878775 588__ $$aDataset connected to CrossRef
000878775 7001_ $$0P:(DE-HGF)0$$aFernandez, Jesus$$b1
000878775 7001_ $$0P:(DE-HGF)0$$aBastin, Sophie$$b2
000878775 7001_ $$0P:(DE-HGF)0$$aCardoso, Rita M.$$b3
000878775 7001_ $$0P:(DE-HGF)0$$aFita, Lluis$$b4
000878775 7001_ $$0P:(DE-HGF)0$$aGiannaros, Theodore M.$$b5
000878775 7001_ $$0P:(DE-Juel1)156253$$aGörgen, Klaus$$b6
000878775 7001_ $$0P:(DE-HGF)0$$aGutierrez, Jose Manuel$$b7
000878775 7001_ $$0P:(DE-HGF)0$$aKartsios, Stergios$$b8
000878775 7001_ $$0P:(DE-HGF)0$$aKatragkou, Eleni$$b9
000878775 7001_ $$0P:(DE-HGF)0$$aLorenz, Torge$$b10
000878775 7001_ $$0P:(DE-HGF)0$$aMilovac, Josipa$$b11
000878775 7001_ $$0P:(DE-HGF)0$$aSoares, Pedro M. M.$$b12
000878775 7001_ $$0P:(DE-HGF)0$$aSobolowski, Stefan$$b13
000878775 7001_ $$0P:(DE-HGF)0$$aWarrach‐Sagi, Kirsten$$b14
000878775 773__ $$0PERI:(DE-600)1491204-1$$a10.1002/joc.6717$$gp. joc.6717$$nS1$$pE656-E671$$tInternational journal of climatology$$v41$$x1097-0088$$y2021
000878775 8564_ $$uhttps://juser.fz-juelich.de/record/878775/files/LavinGullonA2021a.pdf$$yRestricted
000878775 8564_ $$uhttps://juser.fz-juelich.de/record/878775/files/LavinGullonA2021a_pp.pdf$$yPublished on 2020-06-26. Available in OpenAccess from 2021-06-26.$$zStatID:(DE-HGF)0510
000878775 909CO $$ooai:juser.fz-juelich.de:878775$$popenaire$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$popen_access$$pdriver
000878775 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156253$$aForschungszentrum Jülich$$b6$$kFZJ
000878775 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000878775 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878775 9141_ $$y2021
000878775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878775 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000878775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CLIMATOL : 2018$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000878775 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000878775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000878775 920__ $$lyes
000878775 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878775 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000878775 980__ $$ajournal
000878775 980__ $$aVDB
000878775 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878775 980__ $$aI:(DE-82)080012_20140620
000878775 980__ $$aUNRESTRICTED
000878775 9801_ $$aFullTexts