Home > Publications database > Internal variability versus multi‐physics uncertainty in a regional climate model > print |
001 | 878775 | ||
005 | 20240715202020.0 | ||
024 | 7 | _ | |a 10.1002/joc.6717 |2 doi |
024 | 7 | _ | |a 0196-1748 |2 ISSN |
024 | 7 | _ | |a 0899-8418 |2 ISSN |
024 | 7 | _ | |a 1097-0088 |2 ISSN |
024 | 7 | _ | |a 2374-7412 |2 ISSN |
024 | 7 | _ | |a 2128/26856 |2 Handle |
024 | 7 | _ | |a altmetric:85081996 |2 altmetric |
024 | 7 | _ | |a WOS:000550663400001 |2 WOS |
037 | _ | _ | |a FZJ-2020-03037 |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Lavin‐Gullon, Alvaro |0 0000-0003-1665-1337 |b 0 |e Corresponding author |
245 | _ | _ | |a Internal variability versus multi‐physics uncertainty in a regional climate model |
260 | _ | _ | |a Chichester [u.a.] |c 2021 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721024954_11706 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In a recent study, Coppola et al. assessed the ability of an ensemble of convection‐permitting models (CPM) to simulate deep convection using three case studies. The ensemble exhibited strong discrepancies between models, which were attributed to various factors. In order to shed some light on the issue, we quantify in this article the uncertainty associated to different physical parameterizations from that of using different initial conditions, often referred to as the internal variability. For this purpose, we establish a framework to quantify both signals and we compare them for upper atmospheric circulation and near‐surface variables. The analysis is carried out in the context of the CORDEX Flagship Pilot Study on Convective phenomena at high resolution over Europe and the Mediterranean, in which the intermediate RCM WRF simulations that serve to drive the CPM are run several times with different parameterizations. For atmospheric circulation (geopotential height), the sensitivity induced by multi‐physics and the internal variability show comparable magnitudes and a similar spatial distribution pattern. For 2‐m temperature and 10‐m wind, the simulations with different parameterizations show larger differences than those launched with different initial conditions. The systematic effect over 1 year shows distinct patterns for the multi‐physics and the internal variability. Therefore, the general lesson of this study is that internal variability should be analysed in order to properly distinguish the impact of other sources of uncertainty, especially for short‐term sensitivity simulations. |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 0 |
536 | _ | _ | |a Convection-permitting regional climate modelling: Contribution to WCRP CORDEX Flagship Pilot Study ensemble over Europe and joint analysis of water cycle processes and properties (jjsc39_20190501) |0 G:(DE-Juel1)jjsc39_20190501 |c jjsc39_20190501 |f Convection-permitting regional climate modelling: Contribution to WCRP CORDEX Flagship Pilot Study ensemble over Europe and joint analysis of water cycle processes and properties |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Fernandez, Jesus |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Bastin, Sophie |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Cardoso, Rita M. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Fita, Lluis |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Giannaros, Theodore M. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Görgen, Klaus |0 P:(DE-Juel1)156253 |b 6 |
700 | 1 | _ | |a Gutierrez, Jose Manuel |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Kartsios, Stergios |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Katragkou, Eleni |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Lorenz, Torge |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Milovac, Josipa |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Soares, Pedro M. M. |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Sobolowski, Stefan |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Warrach‐Sagi, Kirsten |0 P:(DE-HGF)0 |b 14 |
773 | _ | _ | |a 10.1002/joc.6717 |g p. joc.6717 |0 PERI:(DE-600)1491204-1 |n S1 |p E656-E671 |t International journal of climatology |v 41 |y 2021 |x 1097-0088 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878775/files/LavinGullonA2021a.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/878775/files/LavinGullonA2021a_pp.pdf |y Published on 2020-06-26. Available in OpenAccess from 2021-06-26. |z StatID:(DE-HGF)0510 |
909 | C | O | |o oai:juser.fz-juelich.de:878775 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156253 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
913 | 0 | _ | |a DE-HGF |b Erde und Umwelt |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-255 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-200 |4 G:(DE-HGF)POF |v Terrestrial Systems: From Observation to Prediction |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J CLIMATOL : 2018 |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|