
Internal variability vs multi-physics uncertainty in a1

regional climate model2

A. Lavin-Gullon*, J. Fernandez, S. Bastin, R. M. Cardoso,

L. Fita, T. M. Giannaros, K. Goergen, J. M. Gutierrez,

S. Kartsios, E. Katragkou, T. Lorenz, J. Milovac,

P. M. M. Soares, S. Sobolowski, K. Warrach-Sagi

3

June 18, 20204

*Corresponding author5

A. Lavin-Gullon, J.M. Gutierrez6
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Abstract36

In a recent study, Coppola et al (2020) assessed the ability of an en-37

semble of convection-permitting models (CPM) to simulate deep con-38

vection using three case studies. The ensemble exhibited strong dis-39

crepancies between models, which were attributed to various factors.40

In order to shed some light on the issue, we quantify in this paper41

the uncertainty associated to different physical parameterizations from42

that of using different initial conditions, often referred to as the inter-43

nal variability. For this purpose, we establish a framework to quantify44

both signals and we compare them for upper atmospheric circulation45

and near-surface variables. The analysis is carried out in the context of46

the CORDEX Flagship Pilot Study on Convective phenomena at high47

resolution over Europe and the Mediterranean, in which the interme-48

diate RCM WRF simulations that serve to drive the CPM are run49

several times with different parameterizations. For atmospheric circu-50

lation (geopotential height), the sensitivity induced by multi-physics51

and the internal variability show comparable magnitudes and a similar52

spatial distribution pattern. For 2-meter temperature and 10-meter53

wind, the simulations with different parameterizations show larger dif-54

ferences than those launched with different initial conditions. The55

systematic effect over one year shows distinct patterns for the multi-56

physics and the internal variability. Therefore, the general lesson of57

this study is that internal variability should be analyzed in order to58

properly distinguish the impact of other sources of uncertainty, espe-59

cially for short-term sensitivity simulations.60

Keywords: Internal variability, Regional climate models, Uncer-61

tainty, Physical parameterizations, Ensemble62
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1 Introduction63

The increasing resolution of Regional Climate Models (RCMs) has reached64

the so-called convection-permitting scale (Prein et al, 2015), by approaching65

resolutions of a few kilometers, typically used in Numerical Weather Predic-66

tion (NWP). A recent study by Coppola et al (2020) presented the largest67

multi-model ensemble of convection permitting RCMs to date, with an ini-68

tial experiment exploring the ability of RCMs setup as NWP models and as69

regional climate modelling tools. Strong discrepancies between models were70

found in simulating three heavy precipitation events over the Alps. The71

explanation of these discrepancies was left open, and they speculated on72

three potential explanations: (1) the proximity of the event to the bound-73

aries of the domain, (2) a failure in some RCMs to capture the response to74

the drivers of the event and (3) internal variability being responsible for the75

differences across models. This study is a follow up of Coppola et al (2020),76

where we investigate the role of internal variability in a selected event and77

we also further extend our analysis to a full annual cycle.78

Internal, unforced climate variability is one of the main sources of uncer-79

tainty in global climate simulations (Hawkins and Sutton, 2009). Due to the80

non-linear and chaotic nature of the climate system, small perturbations to a81

given state of the system grow and develop different trajectories in the state82

space (Palmer, 2005). In a relatively short period of time, two slightly per-83

turbed simulations in which initial conditions are modified can differ as much84

as two randomly chosen states of the climate system (Kalnay, 2003). When85

considering coupled systems that exhibit modes of low-frequency variability,86

even mean states over long periods of time can differ considerably. This87

internal or natural variability of the system is commonly explored using en-88

sembles of simulations started from perturbed initial conditions (Haughton89
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et al, 2014). The uncertainty arising from internal variability is not negli-90

gible compared to other sources of uncertainty, such as GCM modelling or91

GHG-scenario uncertainty (Hawkins and Sutton, 2009; Deser et al, 2012;92

van Pelt et al, 2015; Kumar and Ganguly, 2018).93

In contrast, internal variability emerging in regional climate models94

(RCMs) is usually smaller than that in GCMs (Caya and Biner, 2004). This95

uncertainty is also commonly assessed by using a multi-initial-conditions96

ensemble (MICE) in order to separate RCM internal variability from the97

signal of forced variability (Giorgi and Bi, 2000; Christensen et al, 2001;98

Caya and Biner, 2004; Lucas-Picher et al, 2008b; Giorgi, 2019; Bassett et al,99

2020). Several studies concluded that at least 5-6 members should be con-100

sidered to obtain robust estimates of internal variability (Lucas-Picher et al,101

2008b; Laux et al, 2017). Recent studies (Bassett et al, 2020) point to the102

need of even larger ensembles. The amplification of perturbations in the103

initial conditions is damped somewhat by the continuous flow of informa-104

tion through the boundaries of the limited area domain. Lucas-Picher et al105

(2008a) quantified the relation between the RCM internal variability and106

the lateral boundary forcing over the domain. In mid-latitudes, internal107

variability has a seasonal behaviour with higher (lower) values in summer108

(winter), when the boundary forcing (e.g. storm track intensity) is weaker109

(stronger) and the model is more (less) free to develop its own circulation110

(Caya and Biner, 2004; Lucas-Picher et al, 2008b). According to the general111

atmospheric circulation, prevalent winds (e.g. westerlies in mid-latitudes)112

force a flow of information through the boundary. As a result, this forcing113

imposes a typical pattern that exhibits increasing internal variability as one114

travels downwind across the domain. Flow perturbations develop and grow115

as they travel through the RCM domain, reaching a maximum near the116
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downwind boundary where they are forced back to the flow of the GCM in117

the relaxation zone (Lucas-Picher et al, 2008b).118

Despite its relevance, few studies have addressed other RCM uncertain-119

ties in the light of internal variability. Regarding multi-model uncertainty,120

Sanchez-Gomez et al (2009) explored the impact of internal variability for121

four different weather regimes, which showed different sensitivity depending122

on the lateral boundary conditions. The fraction of multi-model uncertainty123

in RCMs that can be explained by internal variability can be relatively large.124

For example, Gu et al (2018) suggest that it could be up to 70% of the to-125

tal uncertainty for the precipitation in Asia. Also, Fathalli et al (2019)126

reported that internal variability was comparable to the inter-model pre-127

cipitation spread in Tunisia during summertime, when the lateral forcing128

constraint is reduced. As for GCMs, the magnitude of RCM internal vari-129

ability depends on the synoptic circulation, model configuration, region and130

season (Giorgi and Bi, 2000; Alexandru et al, 2007).131

The relevance of RCM internal variability is also recognized by the Coor-132

dinated Regional climate Downscaling Experiment (CORDEX; Giorgi and133

Gutowski, 2015), an international ongoing initiative endorsed by the World134

Climate Research Program which coordinates the regional climate downscal-135

ing community. Under this framework, multiple institutions are producing136

and analysing the largest regional multi-model ensemble in history, cover-137

ing all populated areas in the world with a standard set of continental-scale138

domains.139

Multi-RCM ensembles sample the dynamical downscaling methodolog-140

ical uncertainty. As such, it is challenging to discern the contributions to141

uncertainty from other sources (e.g. physical process parameterizations, in-142

ternal variability). This is because RCMs developed by different groups143
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differ in so many aspects that the results from different models and mem-144

bers cannot be used to understand the processes responsible for the spread.145

There have been different attempts to decompose multi-model uncertainty146

into other sources of uncertainty that can be more systematically explored.147

Perturbed-Physics Ensembles (PPE; Yang and Arritt, 2002; Bellprat et al,148

2012) consider a given RCM and explore the uncertainty associated to se-149

lected parameters, by sweeping a range of acceptable parameter values. This150

approach allows to link the resulting uncertainty to a specific parameter.151

Multi-physics ensembles (MPE; see e.g. Garćıa-Dı́ez et al, 2015) provide a152

way to link modelling uncertainties to specific processes. These ensembles153

are generated using a single RCM by switching between different alternative154

physical parameterizations, which are the model components representing155

sub-grid-scale processes such as cloud microphysics, radiation, turbulence,156

etc. Physical parameterization are one of the key differences between dif-157

ferent RCMs and, therefore, MPEs mimic multi-model ensembles with the158

advantage of a fixed dynamical core and the rest of non-sampled physics159

schemes. Of course, these fixed components also limit model diversity and,160

therefore, MPEs cannot replace multi-model ensembles. Quite a few anal-161

yses tested the ability of different MPEs to encompass the regional climate162

in different areas (Fernández et al, 2007; Evans et al, 2012; Solman and163

Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al, 2015; Katragkou et al,164

2015; Stegehuis et al, 2015; Devanand et al, 2018). Some of these analyses165

mentioned internal variability as potential source of background noise that166

impacts the sensitivity to the physical parameterization schemes (Tourpali167

and Zanis, 2013; Stegehuis et al, 2015), though internal variability was not168

formally investigated.169

Few studies consider both physics sensitivity and internal variability. For170
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instance, Laux et al (2017) explicitly aim to separate the effects of internal171

variability from those of changes in land-use, suggesting that internal vari-172

ability has a significant impact on precipitation. Crétat and Pohl (2012)173

also studied the effect of physical parameterizations on internal variability174

and questioned the robustness of previous physics sensitivity studies which175

did not take into account internal variability.176

The Flagship Pilot Study on Convective phenomena at high resolution177

over Europe and the Mediterranean (FPS-Convection) is an ongoing ini-178

tiative endorsed by CORDEX. This initiative aims at studying convective179

processes with CPM over the Alpine region (Coppola et al, 2020) by produc-180

ing both multi-model and multi-physics ensembles of RCM simulations. The181

initial results showed large discrepancies between individual ensemble mem-182

bers in their representation of selected heavy precipitation events. In this183

work, we take advantage of the ensembles produced in the FPS-Convection184

to follow up the study of Coppola et al (2020), in which the origin of these185

discrepancies was determined out of the scope. Since causation is difficult to186

address in a multi-model approach, we focus on the multi-physics ensemble187

within the FPS-Convection RCMs that serve to drive the CPM. We quan-188

titatively compare the signal arising from the use of different model compo-189

nents (physical parameterizations) against that associated to the background190

noise referred to internal variability at different time scales. The objective191

is twofold: (1) to assess whether modelling discrepancies in Coppola et al192

(2020) fall within the range of internal variability and (2) to quantify how193

much uncertainty in a multi-physics ensemble can be explained by internal194

variability.195

The paper is structured as follows: The methodology and data used196

in this work are detailed in Section 2. Section 3 presents and discusses the197
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results. First, applied to a case study presented in Coppola et al. (2020) and,198

second, we extend the study to consider the role and relative magnitude of199

internal variability with respect to multi-physics uncertainty over an annual200

cycle. Finally, the conclusions are summarized in Section 4.201

2 Data & methods202

2.1 Multi-physics ensemble203

In this work, we explore the uncertainty associated to physical parameteri-204

zations by using multi-physics ensembles (MPE, hereafter) generated in the205

context of the FPS-Convection. This initiative considers multiple RCMs,206

but here we will focus only on the sub-ensemble of simulations using the207

Weather Research and Forecasting (WRF) model (Skamarock et al, 2008).208

This modelling system provides the ability to switch among different physical209

parameterization schemes for a given sub-grid-scale process. Additionally,210

WRF allows for online telescopic nesting, running several nested domains si-211

multaneously and exchanging information across domains at each time step.212

This approach gives rise to much smaller artifacts close to the borders of213

the inner domains, as compared to the standard procedure of running the214

model offline, nested into the output of a coarser resolution domain.215

All institutions participating in FPS-Convection and using WRF have216

coordinated a MPE by setting different physical configurations so that at217

least one option differs among them (Table 1). The MPE considers different218

options varying the parameterization schemes for cloud micro-physics pro-219

cesses, surface and land processes, planetary boundary layer, and radiative220

processes. All other model configuration and experimental setup are fixed,221

including the model version (ARW-WRF v3.8.1).222

9



All FPS-Convection WRF simulations consider a high-resolution (∼3km),223

convection-permitting domain centered over the Alpine region (ALP-3) nested224

into a coarser-resolution (∼12 km), and much larger, pan-European domain.225

Except for the deep convection parameterization scheme, that is switched off226

in ALP-3, physical configuration does not differ between both domains. All227

WRF ensemble members used one-way nesting, so there is no communica-228

tion from the convection-permitting back to the coarser domain. Therefore,229

the convection-permitting inner domain did not alter in any way the results230

for the pan-European domain used in this work. Our analyses focus only231

on this pan-European domain, since we are interested in the uncertainty of232

the synoptic conditions over Europe, which drive the needed moisture that233

leads to unstable conditions over the Alpine area (see Section 3.1). The234

ALP-3 domain is not large enough to alter significantly the large-scale syn-235

optic conditions, so, in order to reproduce the case studies of Coppola et al236

(2020) in the ALP-3 domain, the right sequence of observed events should237

be preserved first in the pan-European domain forcing simulations.238

We use WRF data from two different FPS-Convection experiments driven239

by 6-hourly initial and lateral boundary conditions taken from the ERA-240

Interim Reanalysis (Dee et al, 2011):241

Experiment A is described in Coppola et al (2020) and consisted of a242

preliminary test with all participating models, including WRF. Three heavy243

precipitation events in the Alpine region were simulated in two modes, iden-244

tified as “weather-like” and “climate mode”. Weather-like simulations were245

started one day before the onset of the events, aiming at simulating the event246

as closely as possible to the reality, aided by the predictability provided by247

the initial conditions. As the proximity of the initial conditions constrains248
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the internal variability, we did not consider weather-like simulations in this249

study. Climate-mode simulations were started one month before the event,250

so that initial conditions were not a source of predictability in this case and251

the models were mainly driven by the lateral boundary conditions, which252

is typical in regional climate modeling. We focus on a single event that253

occurred around the 23rd June, 2009, and was covered by climate-mode254

simulations running for the period from 1st June to 1st July, 2009 (see Sec-255

tion 3.1). WRF members of the ensemble showed the largest differences in256

terms of predictability of this particular event. WRF simulations for this ex-257

periment used a pan-European domain at 0.11◦×0.11◦ horizontal resolution258

(EUR-11), corresponding to the official EURO-CORDEX domain setup.259

Experiment B consists of RCM evaluation simulations covering a 15-year260

period starting in 1999. All the WRF simulations started using the same261

initial conditions, with soil states generated by a 1-year spin-up run (1998).262

As in experiment A, the WRF model contributed with a MPE. However, the263

physical parameterizations for this experiment were slightly adjusted with264

respect to those used in experiment A (see Table 1) in order to consider265

more complex physics schemes and to avoid uncertainties from the interac-266

tion between distinct PBL and surface layer schemes. It should be noted267

that WRF simulations for this experiment used a slightly coarser ∼15 km268

horizontal resolution (EUR-15) than those in Experiment A, covering the269

same domain. This change was motivated to comply with the recommended270

odd nesting ratios for telescopic domains (5:1 in this case, from EUR-15 to271

ALP-3), which avoids interpolation between the staggered Arakawa-C grids272

used. In this way, fluxes across nested domains are more accurate and com-273

putationally efficient. In this study we used the first year (1999) of these274
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simulations.275

2.2 Multi-initial-conditions ensemble276

A MICE was run to assess the role of internal variability in explaining the277

uncertainty developed by the MPE. We used WRF configurations AI and BI278

(see Table 1) to match the setup of experiments A and B, respectively, using279

a set of 6 different initial conditions. The set of perturbed initial conditions280

was generated using the lagged method (see e.g. Laux et al, 2017), i.e. by281

starting the simulations the day before (AI-r1), 2 days before (AI-r2), and so282

on, up to a 5-day lag (AI-r5). This is a simple way of perturbing the initial283

conditions while maintaining the physical consistency among variables. The284

extra simulated days are excluded, and we analyze only the period common285

to the MPE. The standard, no-lag runs AI and BI (say, AI-r0 and BI-r0)286

are part of both the 8-member MPE and this 6-member MICE.287

We ran the 1-year MICE corresponding to experiment B (BI-r1 to BI-288

r5) only for the EUR-15 domain, without the inner ALP-3 nesting, so as to289

significantly reduce computational demands. Since no feedback from ALP-290

3 back to EUR-15 was allowed in the MPE, our EUR-15 MICE is fully291

comparable to EUR-15 MPE.292

2.3 Quantification of uncertainty293

In order to quantify the uncertainty (spread) in the two ensembles, we fol-294

lowed the approach of Lucas-Picher et al (2008b), who used an unbiased295

estimator of the inter-member variance:296

σ2X(s, t) =
1

M − 1

M∑
m=1

(X(s, t,m)− 〈X〉(s, t))2 (1)

12



where X(s, t,m) is the value of a given variable X at position s (summariz-297

ing, in this case, typical bi-dimensional position indices i, j), at time step t298

and from ensemble member m. M is the total number of ensemble members.299

The term 〈X〉(s, t) is the ensemble mean at a given position s and time t:300

〈X〉(s, t) =
1

M

M∑
m=1

X(s, t,m). (2)

To avoid confusion, we keep in this methodological summary the notation301

of Lucas-Picher et al (2008b) and earlier publications on internal variability,302

although the use of Greek letters (σ2) to refer to a sample variance estimator303

is uncommon, and usually reserved for the population parameters to be304

estimated (Wilks, 2011). Note that even though this measure was proposed305

to quantify internal variability, it is just a measure of spread or uncertainty,306

that can be applied to any ensemble. This is typically employed to quantify307

internal variability on MICE. In this work, we apply it to both MPE and308

MICE.309

The uncertainty, as represented by Eq. 1, is a spatio-temporal field. The310

evolution of uncertainty in time (UT ) is calculated by considering the spatial311

average of the inter-member variance σ2X as312

UT 2 ≡ σ2X
s
(t) =

1

S

S∑
s=1

σ2X(s, t) (3)

where S is the total number of grid cells in the domain. UT 2 represents the313

domain average of the inter-member variance. To emphasize the quadratic314

nature of this uncertainty measure, we use the symbol UT 2 in Eq. 3 but, in315

the following, we consider always its square root UT , which has the units316

of the variable, and allows for an easier interpretation. In the same way, a317

spatial distribution of the uncertainty (US) is obtained by considering the318
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time average of the inter-member variance σ2X as319

US2 ≡ σ2X
t
(s) =

1

T

T∑
t=1

σ2X(s, t) (4)

where T is the total number of time steps in the period. This expression is320

an estimate of the expected value of the inter-member variance over a period321

of interest.322

We consider transient eddy variability (TEV ) as a reference for inter-323

member variability. Passing weather systems create a natural time variabil-324

ity in meteorological fields, which sets a limit to the maximum variability325

attainable at a given location. This variability is seasonally dependent, so326

Caya and Biner (2004) proposed to use a monthly estimator and compute a327

spatial average to make it comparable to UT:328

TEV 2 ≡ σ̂2X(τ,m) =
1

S

S∑
s=1

(
X(s, t,m)−Xτ

(s,m)
)2τ

(5)

where the τ operator computes the monthly average, i.e. the mean for all329

time steps t corresponding to a given month τ . Again, the σ-notation is from330

previous literature but, in the following, we will simply refer to this monthly-331

averaged, transient-eddy variance as TEV. Note that TEV depends on the332

model and also suffers from sampling uncertainty, which will be quantified333

by computing it from different ensemble members.334

Finally, the long-term impact (LTI) of the inter-member uncertainty335

on the climatology of a meteorological field is estimated by calculating the336

variance of the climate among ensemble members as337

LTI2 ≡ σ2
X

(s) =
1

M−1

M∑
m=1

(
X
t
(s,m)−

〈
X
t
〉

(s)
)2

(6)
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where X
t
(s,m) is the time average (i.e. the climatology) of each ensemble338

member m and
〈
X
t
〉

(s) is the ensemble mean of the climatologies. Note339

that LTI measures the ”uncertainty” of climate, while US measures the340

”climate” of the uncertainty. The latter is sensitive to the correspondence341

of meteorological events (e.g. heavy precipitation convective events) in time342

and space, while the former measures systematic deviations among members343

that lead to a different mean state (climate).344

3 Results & discussion345

3.1 Event reproducibility346

As an example, we focus first on a heavy precipitation case study ana-347

lyzed by Coppola et al (2020). The event was mostly driven by large-scale348

features, which consisted of a cut-off low over the Balkans inducing a persis-349

tent northeasterly flow over Austria. This unstable flow was warm and wet350

enough to trigger extreme precipitation by orographic lifting upon reaching351

the Alps. Observations reveal precipitation peaking on the 23rd June, 2009,352

over Austria. RCM simulations consistently reproduced this heavy precipi-353

tation event under weather-like initialization (see Section 2.1), but Coppola354

et al (2020) reported mixed results when considering the climate-mode ini-355

tialization. Some members of the multi-model/multi-physics ensemble com-356

pletely missed the precipitation event or represent highly damped versions357

of it (see Figure 4 of Coppola et al (2020)). They speculated on a poten-358

tially weak background synoptic forcing for this event, which we investigate359

in this work.360

Notably, the WRF MPE alone also exhibited mixed results in reproduc-361

ing the event. For illustration, Figure 1 (left) shows the accumulated pre-362
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cipitation on 23rd June for 4 WRF configurations. Only WRF configuration363

AF is able to reproduce the event, with extended precipitation over Austria.364

Other WRF configurations (AB, AE, AD) miss the event and show some365

precipitation over southern Italy or very scarce precipitation (configurations366

AC, AG, AI, not shown in Figure 1).367

The synoptic situation, as represented by the 850hPa geopotential height368

(Figure 1, right), shows the cut-off low located as observed (ERA-Interim)369

over the Balkans for the AF configuration. For the rest of the MPE mem-370

bers, a low-pressure system is simulated in southern Italy, which alters the371

circulation so that the warm-moist airflow over the Alps is strongly reduced372

and precipitation is eventually not occurring or occurring over other areas373

(southern Italy).374

Given that MPE members differ only in their physical parameterization375

schemes, one might be tempted to assume that configuration AF outper-376

forms the rest. That would imply e.g. that the use of the YSU non-local377

boundary layer scheme somehow helps in developing the cut-off low at the378

right location, as opposite to the MYNN2 local mixing scheme. This is the379

only difference between configurations AF and AD. Moreover, YSU alone380

cannot explain the ability of AF to represent the event, because configuration381

AB also used this PBL scheme. The only difference between configurations382

AF and AB is the land surface model (LSM). AF used Noah-MP, a much ex-383

tended version (Niu et al, 2011) of the Noah LSM (used in AB), considering384

a multi-layer snow model with more realistic snow physics, canopy shadows,385

snow on canopy, an aquifer layer, and many other improvements. Other con-386

figurations used Noah-MP (AD, AE or AI), though, and the low pressure387

system and precipitation still did not occur on the right place. Therefore,388

either the exact parameterization combination of configuration AF is the389
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key or there must be a different explanation for the discrepancies.390

Note that WRF was run using one-way, online telescopic nesting and,391

therefore, we can also rule out the proximity of the high precipitation event392

to the ALP-3 domain boundaries as potential cause for the different model393

results in Coppola et al (2020). Boundary artifacts close to the inner bound-394

aries are greatly reduced in this setup and still some WRF members repro-395

duced the event while others missed it.396

An alternative hypothesis is that the different development of the event397

in the different MPE members is just the result of internal variability. To398

test this hypothesis, we considered a MICE based on configuration AI, which399

did not develop the event under the standard MPE initialization setup (start400

date: 00UTC, 1st June, 2009). Configuration AI (AI-r0) developed a low401

over southern Italy (Figure 2a), as many of the other configurations (Fig-402

ure 1). Many of the MICE members also developed a low over this area403

(see e.g. Figure 2), but member AI-r1 (start date: 00UTC, 31st May, 2009)404

presents a low in the right place, when compared against ERA-Interim.405

This was achieved by perturbing the initial conditions, starting the simula-406

tion one day earlier, and preserving exactly the same model configuration.407

Note that this is not a matter of improved initial conditions, since there are408

more than 20 days simulated from the geopotential height fields shown in409

Figures 1 (right) and 2, well beyond the limit of deterministic predictabil-410

ity of an atmospheric state. This is the result of internal variability. The411

slight perturbations in the initial conditions grew up by the non-linear dy-412

namical model. This process is in competition with the constraints imposed413

by the lateral boundary conditions, which bring the flow towards that of414

ERA-Interim close to border of the domain. This constraint can be seen in415

Figures 1 (right) and 2.416
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In this particular flow state, there seem to be two preferred weather417

regimes over the southern Mediterranean area or, at least, our model sim-418

ulations were only able to generate these two weather regimes: one with419

a low evolving over southern Italy and the other with the low positioned420

over the Balkans. The observed flow took the Balkan low path even though421

the model has difficulties to reproduce this path. Note that these weather422

regimes and their probability of occurrence are likely model dependent. In423

any case, this is just one particular event. Once we have shown that internal424

variability can trigger flow deviations similar to those from different physi-425

cal parameterizations, we focus on quantifying their relative uncertainty, i.e.426

the spread of MPE and MICE ensembles.427

The evolution of inter-member variance in time for MPE and MICE (Fig-428

ure 3) can reach comparable values. MPE member simulations take exactly429

the same initial and lateral boundary conditions from ERA-Interim, hence430

the uncertainty (essentially the member-to-member variability) at the start431

is very small (close to zero during the first day), indicating that all members432

produce similar circulation patterns. As the different physical parameteri-433

zations have an effect on the model, each member simulated a different syn-434

optic situation and the uncertainty increases. Regarding the MICE, since435

its members were initialized before the MPE start date shown in Figure436

3, the spread among members is larger than in the MPE in the beginning437

of June. MICE uncertainty (i.e. internal variability) remains fairly stable438

along the 1-month time span of the simulation. After about 10 days, the439

magnitude of MPE and MICE inter-member variance are comparable, with440

internal variability (MICE spread) generally larger than MPE spread. This441

suggests that the different physical parameterizations used in the MPE in-442

troduce smaller differences among members than those arising from internal443
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variability.444

A qualitative look at the UT evolution (Figure 3) shows that, even if445

uncertainty remains quite stable, there are periods of increased uncertainty446

that seem to be synchronous in both ensembles. These must be periods of ei-447

ther weaker lateral boundary forcing (the only external forcing) or increased448

internal variability due to a particular situation of the internal dynamics.449

Notably, the period 22-26 June, when the heavy precipitation event occurred450

over Austria, is a period of increased uncertainty, where internal variabil-451

ity surpasses MPE spread. Also, MPE spread seems to develop a linear452

trend along the 1-month period. If sustained, this trend would overcome453

internal variability in longer periods. Unfortunately, FPS-Convection ex-454

periment A only considered 1-month-long simulations. In order to explore455

MPE vs. MICE uncertainty over a longer period, we use the output from456

FPS-Convection experiment B in the next section.457

Experiment B produced a MPE with slightly different model configura-458

tions (Table 1) and also on a slightly coarser domain (EUR-15). In order to459

discard a sensitivity to this coarser resolution, we simulated a new MICE460

using AI configuration but on a much coarser 0.44◦ × 0.44◦ horizontal res-461

olution (EUR-44). Its spread (dashed line on Figure 3) is very similar to462

that of EUR-11, which suggests that a major part of the uncertainty is due463

to the large-scale synoptic pattern and not to smaller scale variability.464

3.2 Analysis over an annual cycle465

We extended the analysis to an one-year period taking advantage of FPS-466

Convection experiment B (Section 2.1). In particular, we extended Figure 3467

to one year using the year 1999 from the WRF MPE of experiment B and468

a MICE based on configuration BI. The resulting inter-member variance in469
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time (Figure 4) shows a very similar behaviour of MPE spread and inter-470

nal variability (MICE spread) along the whole year. MPE members started471

again from the same initial conditions. Therefore, they show very low dif-472

ferences on January 1st, which increases after about 10 days. After this473

10-day transient evolution affected by the initial conditions, both ensembles474

show comparable inter-member variance, exhibiting an annual cycle with475

increased uncertainty in summer. Moreover, even weekly to monthly vari-476

ability in these UT time series seems to match in both ensembles. Notably477

in the last months (Oct-Dec), and also in many other peaks along the year.478

This suggests that the differences introduced by the different physics formu-479

lations along the time are amplified by the model in a similar way than the480

perturbations of the initial conditions. No systematic effect is noticeable in481

the circulation. Put in another way, for this variable at least, multi-physics482

uncertainty can be fully explained by internal variability.483

As in previous studies (Caya and Biner, 2004; Lucas-Picher et al, 2008b),484

we used transient-eddy variability (Equation 5) as a reference for uncer-485

tainty. This is the natural variability of a meteorological field associated to486

weather systems traveling along the storm track. TEV can be computed487

from any of the ensemble members. We used simulation BI (top line in488

Figure 4), which is the only member common to both MPE and MICE. To489

evaluate the uncertainty associated to the selection of this particular mem-490

ber, we computed the monthly TEV from each member, and its standard491

deviation for each ensemble and for each month is shown as error bars in492

Figure 4. TEV spread is very low and any member could have been used as493

the reference. As already found in previous studies in mid-latitudes, TEV is494

larger in winter than in summer, due to the more frequent passage of weather495

systems from the Atlantic. The faster atmospheric circulation in winter im-496
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poses a strong boundary forcing, which may explain the lower spread among497

ensemble members. TEV and the associated boundary forcing is lower dur-498

ing summer. As a result, the model has more freedom to develop its own499

circulation features, increasing the spread between the members. During500

summer, the spread reaches approximately half of the TEV, which would be501

the maximum attainable. This maximum is what one would expect from a502

GCM, which has no lateral boundary constraints. For such a model, MICE503

spread (i.e. internal variability) would increase during 1-2 weeks to reach504

the TEV line and remain around this limit along the year. In this sense,505

RCM internal variability is negligible compared to GCM internal variability506

during winter, but it represents an important fraction (approximately one507

half, in this example) during summer.508

The similarity between MPE and MICE uncertainty is not restricted509

to domain averages. In Figure 5, we show the spread in space, by averag-510

ing inter-member variance in time for each model grid point (Equation 4).511

Both maps show a typical spatial distribution of internal variability in mid-512

latitudes, with increasing variability from the southwestern to the north-513

eastern part of the domain. The patterns are remarkably similar, with514

MPE inter-member variance (Figure 5a) only slightly larger than internal515

variability (Figure 5b). Both reach about 35 m over the Baltic Sea and a516

steeper gradient towards the outflow (eastern) boundary than in the inflow517

(western) one. The westerly input flow is slowly modified by the RCM as it518

travels along the domain, but it is suddenly modified at the outflow bound-519

ary to match again the ERA-Interim flow at the eastern border. Christensen520

et al (2001) suggested that, for a domain over Europe, the lower uncertainty521

in south-western Europe is also due to the fact that the area is mainly sea,522

and not only due to the distance to the boundaries. Seasonal winter (DJF)523
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and summer (JJA) patterns of MPE and MICE inter-member variance (not524

shown) are very similar to those in Figure 5. They show higher (lower)525

intensity in JJA (DJF), reaching 45 m (25 m) over the Baltic Sea.526

The systematic effects of the physical parameterizations on the circu-527

lation can be seen in the long-term impact (Figure 6a). LTI summarizes528

the variability of the climatology for the different ensemble members (Equa-529

tion 6). Note that this variability is about one order of magnitude smaller530

than the uncertainty measures shown previously (cf. the scales of Figures 5531

and 6). Nevertheless, LTI has an impact on the simulated climate, while the532

(time) mean inter-member variance explored previously is mainly due to a533

lack of correlation (Caya and Biner, 2004). The largest differences among534

the simulations using different parameterizations occur in the center of the535

domain, between Germany and Poland, and extend towards the Alpine re-536

gion. Remarkably, systematic differences develop also on the northwestern537

boundary.538

The LTI of internal variability (Figure 6b) shows a distinct pattern, with539

the largest values in the northern half of the domain. The magnitude is540

comparable to that of the MPE, though. Therefore, even though the spatial541

patterns are different, the systematic differences among MPE members are542

still comparable to the internal variability. This would suggest that one-year543

simulations are not enough to distinguish the systematic effect of a particular544

parameterization configuration compared to the impact of different initial545

conditions on the circulation. Since the MICE is just composed of multiple546

realizations of the same model configuration, its LTI must tend to zero as the547

simulation length increases and the climatology of all members tends towards548

the “true” model climatology. Longer simulations, such as those currently549

under way in the FPS-Convection, should provide a better assessment of550
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the LTI of the MPE. For example, for 10-year simulations, the values on551

Figure 6b should be divided by a factor of
√

10 ≈ 3.2 (Lucas-Picher et al,552

2008b). Up to this point, we have focused on the circulation (850 hPa553

geopotential height) and we have seen that multi-physics uncertainty is hard554

to distinguish from internal variability. The results for the circulation at 700555

hPa or 500 hPa (not shown) are qualitatively similar.556

3.3 Surface variables557

Since circulation is only indirectly affected by physical parameterizations, in558

this section we focus on near-surface (2-meter) temperature. This is just one559

example of a variable affected by surface radiative and heat flux balances,560

which are parameterized in RCMs. In particular, the set of parameteriza-561

tions tested in the FPS-Convection WRF ensemble (Table 1) directly affects562

cloud cover, surface energy (and mass) exchange and transport. As a re-563

sult, this MPE shows a spread in surface temperature that substantially564

exceeds internal variability (Figure 7). Other near-surface variables, such565

as 10-meter wind, were also checked (not shown) and showed qualitatively566

similar results as near-surface temperature.567

The evolution of inter-member variance for near-surface temperature,568

both for the MPE and MICE is different from the geopotential height shown569

in Figure 4. The annual cycle is clearer in the TEV than in the variance,570

which only shows a hint of a seasonal cycle during April through October.571

In summer, MPE and MICE spread evolution is uncorrelated, with some572

peak MPE uncertainty events (e.g. end of July) clearly standing out of573

internal variability. However, the strong winter variability seems coherent574

between MPE and MICE spread. Even if multi-physics spread is usually575

the greatest, internal variability seems to modulate it. This is in appar-576
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ent contradiction with the results of Crétat and Pohl (2012), who claimed577

that physical parameterizations modulate IV. They show that two MICE578

under different physical parameterization configurations develop a different579

amount of IV on average. However, they also show (their Figure 4b) a co-580

herent evolution in time of the IV between model configurations. In our581

setup, physical parameterizations cannot modulate IV time evolution since582

the model configuration is fixed in the MICE. Still, Figure 7 shows that,583

despite the different spread amounts in MICE and MPE, both evolve coher-584

ently in time. It is likely that a third variable, such as the strength of the585

external forcing (i.e. boundary conditions), modulates the degree to which586

both physics and IV uncertainties can grow.587

Transient-eddy variability for surface temperature (monthly step line in588

Figure 7) shows again the mid-latitude maximum during winter. A key dif-589

ference compared to the geopotential height is the large variability of TEV590

within MPE members, as compared to the MICE members. In fact, un-591

certainty in MPE nearly doubles internal variability during some months.592

Notably, a peak uncertainty event by the end of July reaches the TEV line593

(especially, when considering its uncertainty), indicating that surface tem-594

perature patterns for the different physics differ as much as two random595

temperature patterns in this month. Note, however, that TEV was com-596

puted using a single month and, therefore, this estimate does not consider597

interannual variability. This might explain the reversal of the TEV cycle598

during November and December. The strong uncertainty in the November599

UT estimate is likely pushing up the TEV value for this month.600

The spatial distribution of the inter-member variance for surface tem-601

perature (Figure 8) reveals, as before, a similar pattern of increasing spread602

towards the northeast in both ensembles. In this case, despite the similar603
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pattern, MPE shows larger spread values in accordance with Figure 7. MPE604

reaches a maximum value of about 3.5 K while MICE reaches about 2 K.605

Finally, apart from the higher day-to-day uncertainty of the MPE for606

surface temperature, a systematic, long-term impact is clearly developed607

for this variable (Figure 9a). Unlike the circulation variable, the long-term608

impact of MPE for temperature is of comparable magnitude to its uncer-609

tainty. Also, it falls well above the long-term impact of internal variability610

(Figure 9b), suggesting that for variables directly influenced by physical pa-611

rameterizations (such as surface temperature), one-year simulations suffice612

to discern the systematic effect of a given parameterization with respect to613

another. Not only the magnitude, but also the spatial pattern of LTI differs614

between that of internal variability and the effect of parameterizations. The615

latter shows three main maxima over Africa, central Europe and Russia. As616

expected, impact is negligible over the sea, where surface temperatures are617

prescribed.618

4 Conclusions619

In this study we quantified the uncertainty arising from WRF model MPEs,620

on two different time scales, developed within the FPS-Convection interna-621

tional initiative. Additionally, for each MPE, new MICEs were performed622

to assess the role of internal variability in explaining the different ability623

of MPE members to reproduce specific convective events. The study was624

carried out for a one-month period focusing on a particular case study of625

heavy precipitation over Austria, and extended to one-year timescale.626

The analyses over the one-month period already shed light on the 2 main627

objectives of this work: (1) The failure of some WRF model configurations to628

reproduce the case study, as reported by Coppola et al (2020), is not related629
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to physical parameterizations, but to the absence of a synoptic circulation630

pattern that favoured the event. Some members of the MICE were able631

to reasonably reproduce the observed synoptic pattern without modifying632

the model parameterization setup. (2) From a quantitative perspective, the633

spread due to the parameterization differences has a magnitude comparable634

to that from internal variability. Therefore, in these one-month simulations,635

the effect of the different physical parameterizations on the circulation can-636

not be distinguished from internal variability.637

The extended study over a one-year period showed similar results for cir-638

culation variables (geopotential height). Multi-physics spread is comparable639

to internal variability both in its time evolution along the year and its spatial640

pattern. In this regard, we found multi-physics circulation uncertainty to641

behave according to previous RCM internal variability studies (Lucas-Picher642

et al, 2008b), with an annual cycle exhibiting increased uncertainty during643

summer and a spatial pattern of increased uncertainty towards the outflow644

boundaries of the regional domain.645

The results, however, depend on the variable, with surface variables646

(known to be sensitive to parameterized processes) showing higher MPE647

spread. For example, for near-surface temperature the spread associated to648

parameterizations was above that due to the internal variability. This sug-649

gests that it is easier to discern both sources of uncertainties when analyzing650

variables more constrained by the model physics, which is typically the case651

in RCM parameterization sensitivity studies (Fernández et al, 2007; Evans652

et al, 2012; Solman and Pessacg, 2012; Jerez et al, 2013; Garćıa-Dı́ez et al,653

2015; Katragkou et al, 2015; Stegehuis et al, 2015; Devanand et al, 2018).654

As a reference for uncertainty, we computed transient-eddy variability,655

and quantified its spread due to the multi-physics and to internal variabil-656
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ity. This type of uncertainty also depends on the variable. For the circu-657

lation, transient-eddy variability of the different physical model configura-658

tions is similar to the internal variability range. However, for near-surface659

temperature, the different physics configurations exhibit a different level of660

transient-eddy variability. This requires further analysis on longer simula-661

tions to properly estimate the inter-annual contribution, but this is beyond662

the scope of the present work.663

The long-term impact of the internal variability has been found to be of664

comparable magnitude to that of multi-physics for atmospheric circulation665

variables on year-long simulations. For surface temperature, however, the666

long-term impact of the multi-physics is larger, standing out of internal667

variability. For both variables, the spatial patterns of MPE and MICE668

differ, and this calls for a detailed study of each physical parameterization669

considered.670

The techniques for quantification of internal variability (Lucas-Picher671

et al, 2008b) were applied here to explore also multi-physics spread, which672

proved to be a useful method for comparing both sources of uncertainty.673

They revealed that uncertainty arising from perturbations of the model674

physics (full replacement of a physics scheme) are seen from the circula-675

tion point of view as perturbations of initial conditions, i.e. as internal676

variability “noise”. Both types of perturbations seem amplified in a similar677

way by the dynamical system and synchronously constrained by the lateral678

boundary conditions. This view of a structured near-surface perturbation679

as a random upper air circulation noise was also found, in a completely680

different context, by Fernández et al (2009).681

The inability of an RCM to reproduce the observed day-to-day circu-682

lation due to internal variability is not a matter of concern for mean cli-683
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mate studies, given that long-term climate is preserved (Caya and Biner,684

2004). However, with the arrival of convection-permitting simulations and685

the increasing interest in the climate of extremes, RCM internal variability686

re-emerges as a matter of concern for model evaluation. As an example, the687

FPS-Convection focuses on high-impact (low probability) convective phe-688

nomena that occur mainly during the summer season, when lateral bound-689

ary forcing is the weakest. The evaluation of models under these conditions690

poses a real challenge that can only be addressed by computationally expen-691

sive experiments including the simulation of long periods and/or the simula-692

tion of a corresponding MICE to disentangle the role of internal variability693

in the results. Other alternatives would be to constrain internal variability694

by using techniques such as spectral nudging, which has its own drawbacks695

(Alexandru et al, 2009), or frequently reinitializing the RCM (Lo et al, 2008;696

Lucas-Picher et al, 2013).697

Finally, the magnitude of internal variability in an RCM has been shown698

to depend on the domain size and location (Giorgi and Bi, 2000; Rinke and699

Dethloff, 2000; Alexandru et al, 2007). Given that, for circulation variables,700

MPE variability behaves as internal variability, we could argue that a similar701

dependence on domain size and location might affect MPE variability. The702

generalization of these results for other domain sizes and for regions with a703

weaker lateral boundary forcing is left for a forthcoming study.704
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1 WRF multi-physics configurations considered in this study916

(see Section 2.1) for experiment A (one-month simulation,917

EUR-11 domain) and experiment B (one-year simulation, EUR-918

15). For each ensemble member, the table shows an Id. code,919

the institution performing the simulation and the physical920

parameterizations used. The ensembles explore the use of921

different schemes for micro-physics (MP), planetary bound-922

ary layer and surface layer (PBL), land surface (LSM), and923

shallow convection (ShC) processes. The PBL schemes de-924

noted with asterisk (*) used a different surface layer scheme925
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each parameterization scheme. . . . . . . . . . . . . . . . . . 39927
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in Table 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40929
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Exp. Id. Institution MP PBL LSM ShC

A

AB Forschungszentrum Jülich (FZJ-IBG3), Germany Thomp. YSU NOAH GRIMS
AC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH GRIMS
AD University of Hohenheim (UHOH), Germany Thomp. MYNN2* NOAH-MP GRIMS
AE Intitute Pierre Simon Laplace (IPSL), France Thomp. MYNN2 NOAH-MP UW
AF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP GRIMS
AG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH GRIMS
AH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH GRIMS
AI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2* NOAH-MP GRIMS

B

BB Forschungszentrum Jülich (FZJ-IBG3), Germany Th-AA YSU NOAH GRIMS
BC National Observatory of Athens (NOA), Greece Thomp. MYNN2 NOAH GRIMS
BD University of Hohenheim (UHOH), Germany Th-AA MYNN2 NOAH-MP GRIMS
BE Intitute Pierre Simon Laplace (IPSL), France Th-AA MYNN2 NOAH-MP UW
BF Bjerknes Centre for Climate Res. (BCCR), Norway Thomp. YSU NOAH-MP GRIMS
BG Aristotle University of Thessaloniki (AUTH), Greece WDM6 YSU NOAH-MP GRIMS
BH Instituto Dom Luiz (IDL), Portugal WDM6 MYNN2 NOAH GRIMS
BI Universidad de Cantabria (UCAN), Spain WDM6 MYNN2 NOAH-MP GRIMS

Table 1: WRF multi-physics configurations considered in this study (see
Section 2.1) for experiment A (one-month simulation, EUR-11 domain) and
experiment B (one-year simulation, EUR-15). For each ensemble member,
the table shows an Id. code, the institution performing the simulation and
the physical parameterizations used. The ensembles explore the use of differ-
ent schemes for micro-physics (MP), planetary boundary layer and surface
layer (PBL), land surface (LSM), and shallow convection (ShC) processes.
The PBL schemes denoted with asterisk (*) used a different surface layer
scheme despite sharing the MYNN2 PBL. See Table 2 for details of each
parameterization scheme.
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Acronym Physical scheme

Thomp. Thompson et al (2008) scheme with ice, snow and graupel processes suitable for high-resolution simulations
Th-AA New Thompson aerosol-aware scheme considering water- and ice-friendly aerosols
WDM6 WRF Double-Moment 6-class microphysics scheme with cloud condensation nuclei for warm processes
YSU Yonsei University non-local closure PBL scheme with revised MM5 Monin-Obukhov surface layer
MYNN2 Mellor-Yamada Nakanishi and Niino Level 2.5 (*combined with revised MM5 Monin-Obukhov surface layer)
NOAH Noah LSM with multilayer soil temperature and moisture, snow cover and frozen soil physics
NOAH-MP Noah LSM-Multi Physics. NOAH with multiple options for land-atmosphere processes
GRIMS Shallow cumulus scheme from the Global/Regional Integrated Modeling System
UW University of Washington shallow cumulus scheme from the Community Earth System Model

Table 2: Physical schemes used in the multi-physics experiments shown in
Table 1.
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Figure 1: Left: Accumulated precipitation (mm) on June, 23rd 2009 accord-
ing to E-OBS (Haylock et al (2008); top) and as simulated in the ALP-3
domain by experiment A for WRF MPE members AF, AD, AB and AE.
Right: 850hPa geopotential height (m) according to ERA-Interim (top) and
the corresponding MPE ensemble members in the EUR-11 domain in pink.
An ERA-Interim 1500m-isoline (the same in all panels) is represented for
reference in black.
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Figure 2: As Figure 1 (right), but for 4 MICE members: AI-r0 to AI-r3.
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Figure 3: Inter-member variance in time (Equation 3) for 850hPa geopo-
tential height (m) in EUR-11 domain of experiment A (June 2009). The
spread is computed separately for MPE (blue) and MICE (red). The latter
was computed both at 0.11◦ and 0.44◦ horizontal resolution with similar
number of ensemble members.
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Figure 4: Inter-member variance in time (UT) for 850hPa geopotential
height (m) in EUR-15 domain of experiment B (year 1999). The uncer-
tainty is computed separately for MPE (blue) and MICE (red). Transient-
eddy variability (Equation 5, black line) was computed from BI configuration
and error bars show its standard deviation for MPE and MICE.
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Figure 5: Spatial distribution of the inter-member variance (US) for the
850 hPa geopotential height (m) in EUR-15 domain of experiment B (year
1999). a) multi-physics ensemble. b) multi-initial-conditions ensemble.
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Figure 6: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on 850hPa geopotential height (m).
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Figure 7: As Fig. 4 but for surface temperature over land.
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Figure 8: Spatial distribution of the inter-member variance for surface tem-
perature (K) in EUR-15 domain of experiment B (year 1999). a) multi-
physics ensemble. b) multi-initial-conditions ensemble.
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Figure 9: Long-term impact of multi-physics (a) and multi-initial-conditions
(b) on surface temperature (K).
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