000878776 001__ 878776
000878776 005__ 20240712100824.0
000878776 0247_ $$2doi$$a10.5194/acp-2020-891
000878776 0247_ $$2Handle$$a2128/25635
000878776 037__ $$aFZJ-2020-03038
000878776 082__ $$a550
000878776 1001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b0$$eCorresponding author
000878776 245__ $$aUpward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
000878776 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000878776 3367_ $$2DRIVER$$aarticle
000878776 3367_ $$2DataCite$$aOutput Types/Journal article
000878776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599743015_22360
000878776 3367_ $$2BibTeX$$aARTICLE
000878776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878776 3367_ $$00$$2EndNote$$aJournal Article
000878776 520__ $$aAbstract. Every year during the Asian summer monsoon season from about mid-June to early September, a stable anticyclonic circulation system forms over the Himalayans. This Asian summer monsoon (ASM) anticyclone has been shown to promote transport of air into the stratosphere from the Asian troposphere, which contains large amounts of anthropogenic pollutants. Essential details of Asian monsoon transport, such as the exact time scales of vertical transport, the role of convection in cross-tropopause exchange, and the main location and level of export from the confined anticyclone to the stratosphere are still not fully resolved. Recent airborne observations from campaigns near the ASM anticyclone edge and centre in 2016 and 2017 respectively show a steady decrease in carbon monoxide (CO) and increase in ozone (O3) with height starting from tropospheric values of 80–100 ppb CO and 30–50 ppb O3 at about 365 K potential temperature. CO mixing ratios reach stratospheric background values of ~ 20 ppb at about 420 K and do not show a significant vertical gradient at higher levels, while ozone continues to increase throughout the altitude range of the aircraft measurements. Nitrous oxide (N2O) remains at or only marginally below its 2017 tropospheric mixing ratio of 326 ppb up to about 400 K, which is above the local tropopause. A decline in N2O mixing ratios that indicates a significant contribution of stratospheric air is only visible above this level. Based on our observations, we draw the following picture of vertical transport and confinement in the ASM anticyclone: rapid convective uplift transports air to near 16 km in altitude, corresponding to potential temperatures up to about 370 K. Although this main convective outflow layer extends above the level of zero radiative heating (LZRH), our observations of CO concentration show little to no evidence of convection actually penetrating the tropopause. Rather, further ascent occurs more slowly, consistent with isentropic vertical velocities of 0.3–0.8 K day−1. For gases not subject to microphysical processes, neither the lapse rate tropopause (LRT) around 380 K nor the cold point tropopause (CPT) around 390 K marks the strong discontinuity of the key tracers (CO, O3, and N2O). Up to about 10 to 20 K above the CPT, isolation of air inside the ASM anticyclone prevents significant in-mixing of stratospheric air. The observed changes in CO and O3 likely result from in-situ chemical processing. Above about 420 K, mixing processes become more significant and the air inside the anticyclone is exported vertically and horizontally into the surrounding stratosphere.
000878776 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000878776 588__ $$aDataset connected to CrossRef
000878776 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b1$$ufzj
000878776 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$ufzj
000878776 7001_ $$0P:(DE-Juel1)161426$$aKloss, Corinna$$b3
000878776 7001_ $$0P:(DE-HGF)0$$aUlanowski, Alexey$$b4
000878776 7001_ $$0P:(DE-HGF)0$$aYushkov, Vladimir$$b5
000878776 7001_ $$0P:(DE-HGF)0$$aRavegnani, Fabrizio$$b6
000878776 7001_ $$0P:(DE-Juel1)168493$$aVolk, C. Michael$$b7
000878776 7001_ $$0P:(DE-HGF)0$$aPan, Laura L.$$b8
000878776 7001_ $$0P:(DE-HGF)0$$aHonomichl, Shawn B.$$b9
000878776 7001_ $$0P:(DE-HGF)0$$aTilmes, Simone$$b10
000878776 7001_ $$0P:(DE-HGF)0$$aKinnison, Douglas E.$$b11
000878776 7001_ $$00000-0002-6963-4592$$aGarcia, Rolando R.$$b12
000878776 7001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b13
000878776 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-891$$p $$tAtmospheric chemistry and physics / Discussions$$v891$$x1680-7367$$y2020
000878776 8564_ $$uhttps://juser.fz-juelich.de/record/878776/files/hobe_acp-2020-891.pdf$$yOpenAccess
000878776 8564_ $$uhttps://juser.fz-juelich.de/record/878776/files/hobe_acp-2020-891.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000878776 909CO $$ooai:juser.fz-juelich.de:878776$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b0$$kFZJ
000878776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b1$$kFZJ
000878776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000878776 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000878776 9141_ $$y2020
000878776 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000878776 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000878776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000878776 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000878776 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000878776 9801_ $$aFullTexts
000878776 980__ $$ajournal
000878776 980__ $$aVDB
000878776 980__ $$aUNRESTRICTED
000878776 980__ $$aI:(DE-Juel1)IEK-7-20101013
000878776 981__ $$aI:(DE-Juel1)ICE-4-20101013