000878788 001__ 878788
000878788 005__ 20210130005747.0
000878788 0247_ $$2doi$$a10.1016/j.quascirev.2020.106333
000878788 0247_ $$2ISSN$$a0277-3791
000878788 0247_ $$2ISSN$$a1873-457X
000878788 0247_ $$2WOS$$aWOS:000541126600003
000878788 037__ $$aFZJ-2020-03042
000878788 082__ $$a550
000878788 1001_ $$0P:(DE-HGF)0$$aStojakowits, Philipp$$b0
000878788 245__ $$aImpact of climatic extremes on Alpine ecosystems during MIS 3
000878788 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000878788 3367_ $$2DRIVER$$aarticle
000878788 3367_ $$2DataCite$$aOutput Types/Journal article
000878788 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600752719_11394
000878788 3367_ $$2BibTeX$$aARTICLE
000878788 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878788 3367_ $$00$$2EndNote$$aJournal Article
000878788 520__ $$aThe effects of climatic extremes on Alpine ecosystems, such as in the last glacial period, are poorly understood. The recently discovered Nesseltalgraben site is currently the best dated and most complete high-resolution sedimentary sequence in the northern Alps covering the Marine Isotope Stage (MIS) 3 around 59-28 calibrated kiloyears before present (ka cal BP). The MIS 3 is a period with frequent climatic fluctuations known as Dansgaard-Oeschger cycles or Greenland interstadials-stadials. Here, we present pollen assemblages, bryophyte macrofossils, and stable isotopes (δ2H, δ13C, δ18O) from the Nesseltalgraben to elucidate palaeoenvironments and palaeoclimatic variability during that period. In addition to bulk sedimentary cellulose, also cellulose extracted from fossil wood, monocots, and bryophytes was analysed isotopically. Among the terrestrial pollen, Poaceae and arboreal pollen show an antithetic behaviour reflecting interstadial-stadial variations. Arboreal pollen are dominated by Pinus sylvestris-type, with admixtures of Picea, Betula, Alnus, and Salix. The arboreal pollen record exhibits several maxima indicating milder climatic conditions tentatively assigned to Greenland interstadials 17–14, 12/11, 8, and 6. During Heinrich events 5 and 4, the arboreal pollen record shows distinct minima underlining a severe impact of these events on regional climate and vegetation. Bryophyte assemblages show predominant wetland conditions at the site during the entire MIS 3. The sudden occurrence of the bryophyte Drepanocladus turgescens after 31.6 ka cal BP indicates a change from a fen to a frequently drying wetland environment. This habitat change is presumably linked to enhanced glaciofluvial action caused by glaciers approaching the site. Carbon, hydrogen, and oxygen stable isotope records of bulk sedimentary cellulose exhibit comparably stable conditions from 59 until 52 ka cal BP and increased values around 51 ka cal BP followed by a period of almost absent cellulose until 39 ka cal BP. Thereafter, and lasting until 30 ka cal BP, bulk sedimentary cellulose isotope records (δ2H, δ13C, and δ18O) reveal strongly fluctuating values. These isotope variations are interpreted as variable mixtures between terrestrial lignified plants and monocots on the one, and wetland bryophyte sources on the other hand. A strong negative isotope excursion in the bulk sedimentary and the bryophyte cellulose records around 36.4 ka cal BP is contemporaneous with maximum Cyperaceae pollen and best explained by progressively waterlogged soils due to permafrost. The rise in the bryophyte δ18O record thereafter, accompanied by likewise increasing δ13C values, most likely indicates an enhanced evaporation of source waters.
000878788 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000878788 588__ $$aDataset connected to CrossRef
000878788 7001_ $$0P:(DE-HGF)0$$aMayr, Christoph$$b1$$eCorresponding author
000878788 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b2
000878788 7001_ $$0P:(DE-Juel1)129557$$aWissel, Holger$$b3$$ufzj
000878788 7001_ $$0P:(DE-HGF)0$$aHedenäs, Lars$$b4
000878788 7001_ $$0P:(DE-HGF)0$$aLempe, Bernhard$$b5
000878788 7001_ $$0P:(DE-HGF)0$$aFriedmann, Arne$$b6
000878788 7001_ $$0P:(DE-HGF)0$$aDiersche, Volker$$b7
000878788 773__ $$0PERI:(DE-600)1495523-4$$a10.1016/j.quascirev.2020.106333$$gVol. 239, p. 106333 -$$p106333 -$$tQuaternary science reviews$$v239$$x0277-3791$$y2020
000878788 8564_ $$uhttps://juser.fz-juelich.de/record/878788/files/Mayr_etal_NTG_postreview_preprint.pdf$$yPublished on 2020-05-25. Available in OpenAccess from 2022-05-25.
000878788 8564_ $$uhttps://juser.fz-juelich.de/record/878788/files/Mayr_etal_NTG_postreview_preprint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-05-25. Available in OpenAccess from 2022-05-25.
000878788 909CO $$ooai:juser.fz-juelich.de:878788$$pVDB:Earth_Environment$$pVDB
000878788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich$$b2$$kFZJ
000878788 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129557$$aForschungszentrum Jülich$$b3$$kFZJ
000878788 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000878788 9141_ $$y2020
000878788 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000878788 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bQUATERNARY SCI REV : 2018$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000878788 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000878788 920__ $$lyes
000878788 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000878788 980__ $$ajournal
000878788 980__ $$aVDB
000878788 980__ $$aI:(DE-Juel1)IBG-3-20101118
000878788 980__ $$aUNRESTRICTED