000878800 001__ 878800
000878800 005__ 20240708133545.0
000878800 0247_ $$2tecpub$$atecpub:3413
000878800 0247_ $$2doi$$a10.1080/15361055.2019.1607706
000878800 0247_ $$2Handle$$a2128/25543
000878800 0247_ $$2WOS$$aWOS:000478073000017
000878800 037__ $$aFZJ-2020-03053
000878800 082__ $$a530
000878800 1001_ $$0P:(DE-HGF)0$$aYouchison, D.$$b0$$eCorresponding author
000878800 245__ $$aDevelopment and Performance of Tungsten-Coated Graphitic Foam for Plasma-Facing Components
000878800 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000878800 3367_ $$2DRIVER$$aarticle
000878800 3367_ $$2DataCite$$aOutput Types/Journal article
000878800 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599456662_14836
000878800 3367_ $$2BibTeX$$aARTICLE
000878800 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878800 3367_ $$00$$2EndNote$$aJournal Article
000878800 520__ $$aHigh-density graphitic foam is an ideal low-Z plasma-facing material for deuterium-deuterium plasma experiments where tritium codeposition is not an issue. However, like all carbon, graphitic foam suffers from a precipitous drop in thermal conductivity at high temperatures, >600°C. To mitigate these problems, functionally graded layers of tungsten can be deposited to a thickness of 2 to 4 mm onto the plasma side of the foam using chemical vapor deposition. The graphitic foam then acts as a high-conductivity heat sink at temperatures below 600°C for the thin high-Z armor coating. The overall component weighs 18 times less than a comparable volume of tungsten and lacks the coefficient of thermal expansion joining issues between the CuCrZr tubing and the tungsten. This paper discusses the coating development and characterization and presents the results of recent plasma exposures in W7-X. It also reports on computational fluid dynamics heat transfer modeling and preparations for high heat flux testing of mock-ups. This hybrid plasma-facing component (PFC) consisting of innovative engineered materials may be a cost-effective, actively cooled solution for the divertors and other PFCs in long-pulse machines like W7-X and WEST.
000878800 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878800 588__ $$aDataset connected to tecpub
000878800 7001_ $$0P:(DE-HGF)0$$aW Coenen, J.$$b1
000878800 7001_ $$0P:(DE-HGF)0$$aT Gray, T.$$b2
000878800 7001_ $$0P:(DE-HGF)0$$aLumsdaine, A.$$b3
000878800 7001_ $$0P:(DE-HGF)0$$aW Klett, J.$$b4
000878800 7001_ $$0P:(DE-HGF)0$$aJolly, B.$$b5
000878800 7001_ $$0P:(DE-HGF)0$$aGehrig, M.$$b6
000878800 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b7
000878800 7001_ $$0P:(DE-HGF)0$$aRsinski, M.$$b8
000878800 773__ $$0PERI:(DE-600)1492280-0$$a10.1080/15361055.2019.1607706$$n6$$p551-557$$tFusion engineering and design$$v75(6)$$x0920-3796$$y2019
000878800 8564_ $$uhttps://juser.fz-juelich.de/record/878800/files/Postprint_Coenen_Development%20and%20Performance.pdf$$yPublished on 2019-05-23. Available in OpenAccess from 2021-05-23.
000878800 8564_ $$uhttps://juser.fz-juelich.de/record/878800/files/Postprint_Coenen_Development%20and%20Performance.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-05-23. Available in OpenAccess from 2021-05-23.
000878800 909CO $$ooai:juser.fz-juelich.de:878800$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878800 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b7$$kFZJ
000878800 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878800 9141_ $$y2020
000878800 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878800 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUSION ENG DES : 2018$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-09
000878800 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-09$$wger
000878800 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-09
000878800 920__ $$lyes
000878800 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000878800 9801_ $$aFullTexts
000878800 980__ $$ajournal
000878800 980__ $$aVDB
000878800 980__ $$aUNRESTRICTED
000878800 980__ $$aI:(DE-Juel1)IEK-4-20101013
000878800 981__ $$aI:(DE-Juel1)IFN-1-20101013