001     878800
005     20240708133545.0
024 7 _ |a tecpub:3413
|2 tecpub
024 7 _ |a 10.1080/15361055.2019.1607706
|2 doi
024 7 _ |a 2128/25543
|2 Handle
024 7 _ |a WOS:000478073000017
|2 WOS
037 _ _ |a FZJ-2020-03053
082 _ _ |a 530
100 1 _ |a Youchison, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Development and Performance of Tungsten-Coated Graphitic Foam for Plasma-Facing Components
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599456662_14836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a High-density graphitic foam is an ideal low-Z plasma-facing material for deuterium-deuterium plasma experiments where tritium codeposition is not an issue. However, like all carbon, graphitic foam suffers from a precipitous drop in thermal conductivity at high temperatures, >600°C. To mitigate these problems, functionally graded layers of tungsten can be deposited to a thickness of 2 to 4 mm onto the plasma side of the foam using chemical vapor deposition. The graphitic foam then acts as a high-conductivity heat sink at temperatures below 600°C for the thin high-Z armor coating. The overall component weighs 18 times less than a comparable volume of tungsten and lacks the coefficient of thermal expansion joining issues between the CuCrZr tubing and the tungsten. This paper discusses the coating development and characterization and presents the results of recent plasma exposures in W7-X. It also reports on computational fluid dynamics heat transfer modeling and preparations for high heat flux testing of mock-ups. This hybrid plasma-facing component (PFC) consisting of innovative engineered materials may be a cost-effective, actively cooled solution for the divertors and other PFCs in long-pulse machines like W7-X and WEST.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to tecpub
700 1 _ |a W Coenen, J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a T Gray, T.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lumsdaine, A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a W Klett, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jolly, B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gehrig, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 7
700 1 _ |a Rsinski, M.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1080/15361055.2019.1607706
|0 PERI:(DE-600)1492280-0
|n 6
|p 551-557
|t Fusion engineering and design
|v 75(6)
|y 2019
|x 0920-3796
856 4 _ |y Published on 2019-05-23. Available in OpenAccess from 2021-05-23.
|u https://juser.fz-juelich.de/record/878800/files/Postprint_Coenen_Development%20and%20Performance.pdf
856 4 _ |y Published on 2019-05-23. Available in OpenAccess from 2021-05-23.
|x pdfa
|u https://juser.fz-juelich.de/record/878800/files/Postprint_Coenen_Development%20and%20Performance.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878800
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129976
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-09
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUSION ENG DES : 2018
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-09
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21