000878802 001__ 878802
000878802 005__ 20240708133545.0
000878802 0247_ $$2tecpub$$atecpub:3342
000878802 0247_ $$2doi$$a10.1016/j.engfracmech.2020.107011
000878802 0247_ $$2Handle$$a2128/25805
000878802 0247_ $$2WOS$$aWOS:000536482400005
000878802 037__ $$aFZJ-2020-03055
000878802 082__ $$a530
000878802 1001_ $$0P:(DE-HGF)0$$aGietl, H.$$b0$$eCorresponding author
000878802 245__ $$aEstimation of the fracture toughness of tungsten fibre-reinforced tungsten composites
000878802 260__ $$aKidlington$$bElsevier Science$$c2020
000878802 3367_ $$2DRIVER$$aarticle
000878802 3367_ $$2DataCite$$aOutput Types/Journal article
000878802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601571807_20524
000878802 3367_ $$2BibTeX$$aARTICLE
000878802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000878802 3367_ $$00$$2EndNote$$aJournal Article
000878802 520__ $$aTungsten fibre-reinforced tungsten composites (Wf/W) have been developed to overcome the inherent brittleness of tungsten, which is a promising candidate for the plasma-facing material in a future fusion power plant. As the development of Wf/W evolves, the fracture toughness of the composite is in the focus of interest for further component design. In this contribution fracture mechanical tests on two different types of chemical vapour deposited (CVD) Wf/W are presented. Three-point bending tests according to ASTM E399 as a standard method for brittle materials were used to get a first estimation of the toughness. A provisional fracture toughness value of up to 241 MPa was calculated for the as-fabricated and of up to 20.5 MPa for a heat-treated and thus embrittled state. As the material does not show a brittle fracture in the as-fabricated state, the J-Integral approach based on the ASTM E1820 was additionally applied for this state. A maximum value of the J-integral of 7.5 kJ/ (57.6 MPa ) was determined. A detailed post mortem investigations was used to obtain the active mechanisms.
000878802 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000878802 588__ $$aDataset connected to tecpub
000878802 7001_ $$0P:(DE-HGF)0$$aOlbrich, S.$$b1
000878802 7001_ $$0P:(DE-HGF)0$$aRisch, J.$$b2
000878802 7001_ $$0P:(DE-HGF)0$$aHolzner, G.$$b3
000878802 7001_ $$0P:(DE-HGF)0$$aHoeschen, T.$$b4
000878802 7001_ $$0P:(DE-Juel1)2594$$aCoenen, Jan Willem$$b5
000878802 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b6
000878802 773__ $$0PERI:(DE-600)2012718-2$$a10.1016/j.engfracmech.2020.107011$$p107011$$tEngineering fracture mechanics$$v232$$x0013-7944$$y2020
000878802 8564_ $$uhttps://juser.fz-juelich.de/record/878802/files/Postprint_Coenen_Estimation_of_the_fracture_toughnessJ.pdf$$yPublished on 2020-04-04. Available in OpenAccess from 2022-04-04.
000878802 8564_ $$uhttps://juser.fz-juelich.de/record/878802/files/Postprint_Coenen_Estimation_of_the_fracture_toughnessJ.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-04-04. Available in OpenAccess from 2022-04-04.
000878802 909CO $$ooai:juser.fz-juelich.de:878802$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000878802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b5$$kFZJ
000878802 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000878802 9141_ $$y2020
000878802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-17
000878802 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000878802 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000878802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENG FRACT MECH : 2018$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000878802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000878802 920__ $$lyes
000878802 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000878802 9801_ $$aFullTexts
000878802 980__ $$ajournal
000878802 980__ $$aVDB
000878802 980__ $$aUNRESTRICTED
000878802 980__ $$aI:(DE-Juel1)IEK-4-20101013
000878802 981__ $$aI:(DE-Juel1)IFN-1-20101013