001     878802
005     20240708133545.0
024 7 _ |a tecpub:3342
|2 tecpub
024 7 _ |a 10.1016/j.engfracmech.2020.107011
|2 doi
024 7 _ |a 2128/25805
|2 Handle
024 7 _ |a WOS:000536482400005
|2 WOS
037 _ _ |a FZJ-2020-03055
082 _ _ |a 530
100 1 _ |a Gietl, H.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Estimation of the fracture toughness of tungsten fibre-reinforced tungsten composites
260 _ _ |a Kidlington
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601571807_20524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Tungsten fibre-reinforced tungsten composites (Wf/W) have been developed to overcome the inherent brittleness of tungsten, which is a promising candidate for the plasma-facing material in a future fusion power plant. As the development of Wf/W evolves, the fracture toughness of the composite is in the focus of interest for further component design. In this contribution fracture mechanical tests on two different types of chemical vapour deposited (CVD) Wf/W are presented. Three-point bending tests according to ASTM E399 as a standard method for brittle materials were used to get a first estimation of the toughness. A provisional fracture toughness value of up to 241 MPa was calculated for the as-fabricated and of up to 20.5 MPa for a heat-treated and thus embrittled state. As the material does not show a brittle fracture in the as-fabricated state, the J-Integral approach based on the ASTM E1820 was additionally applied for this state. A maximum value of the J-integral of 7.5 kJ/ (57.6 MPa ) was determined. A detailed post mortem investigations was used to obtain the active mechanisms.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to tecpub
700 1 _ |a Olbrich, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Risch, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Holzner, G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hoeschen, T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Coenen, Jan Willem
|0 P:(DE-Juel1)2594
|b 5
700 1 _ |a Neu, R.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.engfracmech.2020.107011
|0 PERI:(DE-600)2012718-2
|p 107011
|t Engineering fracture mechanics
|v 232
|y 2020
|x 0013-7944
856 4 _ |y Published on 2020-04-04. Available in OpenAccess from 2022-04-04.
|u https://juser.fz-juelich.de/record/878802/files/Postprint_Coenen_Estimation_of_the_fracture_toughnessJ.pdf
856 4 _ |y Published on 2020-04-04. Available in OpenAccess from 2022-04-04.
|x pdfa
|u https://juser.fz-juelich.de/record/878802/files/Postprint_Coenen_Estimation_of_the_fracture_toughnessJ.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:878802
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)2594
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-17
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENG FRACT MECH : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21