000008806 001__ 8806
000008806 005__ 20210129210447.0
000008806 0247_ $$2pmid$$apmid:20005962
000008806 0247_ $$2DOI$$a10.1016/j.neuroimage.2009.12.029
000008806 0247_ $$2WOS$$aWOS:000274810100023
000008806 037__ $$aPreJuSER-8806
000008806 041__ $$aeng
000008806 082__ $$a610
000008806 084__ $$2WoS$$aNeurosciences
000008806 084__ $$2WoS$$aNeuroimaging
000008806 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000008806 1001_ $$0P:(DE-HGF)0$$aGrefkes, C.$$b0
000008806 245__ $$aModulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling
000008806 260__ $$aOrlando, Fla.$$bAcademic Press$$c2010
000008806 300__ $$a233 - 242
000008806 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008806 3367_ $$2DataCite$$aOutput Types/Journal article
000008806 3367_ $$00$$2EndNote$$aJournal Article
000008806 3367_ $$2BibTeX$$aARTICLE
000008806 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008806 3367_ $$2DRIVER$$aarticle
000008806 440_0 $$04545$$aNeuroImage$$v50$$x1053-8119
000008806 500__ $$aS.B.E. was funded by the Human Brain Project (R01-MH074457-01A1) and the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model).
000008806 520__ $$aData derived from transcranial magnetic stimulation (TMS) studies suggest that transcallosal inhibition mechanisms between the primary motor cortex of both hemispheres may contribute to the reduced motor performance of stroke patients. We here investigated the potential of modulating pathological interactions between cortical motor areas by means of repetitive TMS using functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM). Eleven subacute stroke patients were scanned 1-3 months after symptom onset while performing whole hand fist closure movements. After a baseline scan, patients were stimulated with inhibitory 1-Hz rTMS applied over two different locations: (i) vertex (control stimulation) and (ii) primary motor cortex (M1) of the unaffected (contralesional) hemisphere. Changes in the endogenous and task-dependent effective connectivity were assessed by DCM of a bilateral network comprising M1, lateral premotor cortex, and the supplementary motor area (SMA). The results showed that rTMS applied over contralesional M1 significantly improved the motor performance of the paretic hand. The connectivity analysis revealed that the behavioral improvements were significantly correlated with a reduction of the negative influences originating from contralesional M1 during paretic hand movements. Concurrently, endogenous coupling between ipsilesional SMA and M1 was significantly enhanced only after rTMS applied over contralesional M1. Therefore, rTMS applied over contralesional M1 may be used to transiently remodel the disturbed functional network architecture of the motor system. The connectivity analyses suggest that both a reduction of pathological transcallosal influences (originating from contralesional M1) and a restitution of ipsilesional effective connectivity between SMA and M1 underlie improved motor performance.
000008806 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000008806 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000008806 588__ $$aDataset connected to Web of Science, Pubmed
000008806 65320 $$2Author$$aFMRI
000008806 65320 $$2Author$$aDCM
000008806 65320 $$2Author$$aRehabilitation
000008806 65320 $$2Author$$aTranscranial magnetic stimulation
000008806 650_2 $$2MeSH$$aAdult
000008806 650_2 $$2MeSH$$aCerebral Cortex: physiopathology
000008806 650_2 $$2MeSH$$aFemale
000008806 650_2 $$2MeSH$$aFrontal Lobe: physiopathology
000008806 650_2 $$2MeSH$$aHand: physiology
000008806 650_2 $$2MeSH$$aHumans
000008806 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000008806 650_2 $$2MeSH$$aMale
000008806 650_2 $$2MeSH$$aMiddle Aged
000008806 650_2 $$2MeSH$$aModels, Neurological
000008806 650_2 $$2MeSH$$aMotor Activity: physiology
000008806 650_2 $$2MeSH$$aMotor Cortex: physiopathology
000008806 650_2 $$2MeSH$$aNeural Pathways: physiopathology
000008806 650_2 $$2MeSH$$aParesis: physiopathology
000008806 650_2 $$2MeSH$$aStroke: physiopathology
000008806 650_2 $$2MeSH$$aTime Factors
000008806 650_2 $$2MeSH$$aTranscranial Magnetic Stimulation: methods
000008806 650_2 $$2MeSH$$aYoung Adult
000008806 650_7 $$2WoSType$$aJ
000008806 7001_ $$0P:(DE-HGF)0$$aNowak, D. A.$$b1
000008806 7001_ $$0P:(DE-Juel1)VDB75806$$aWang, L.E.$$b2$$uFZJ
000008806 7001_ $$0P:(DE-HGF)0$$aDafotakis, M.$$b3
000008806 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S. B.$$b4$$uFZJ
000008806 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b5$$uFZJ
000008806 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2009.12.029$$gVol. 50, p. 233 - 242$$p233 - 242$$q50<233 - 242$$tNeuroImage$$v50$$x1053-8119$$y2010
000008806 8567_ $$uhttp://dx.doi.org/10.1016/j.neuroimage.2009.12.029
000008806 909CO $$ooai:juser.fz-juelich.de:8806$$pVDB
000008806 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008806 9141_ $$y2010
000008806 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000008806 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000008806 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000008806 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x1
000008806 970__ $$aVDB:(DE-Juel1)117987
000008806 980__ $$aVDB
000008806 980__ $$aConvertedRecord
000008806 980__ $$ajournal
000008806 980__ $$aI:(DE-Juel1)INM-2-20090406
000008806 980__ $$aI:(DE-Juel1)INM-3-20090406
000008806 980__ $$aUNRESTRICTED
000008806 981__ $$aI:(DE-Juel1)INM-3-20090406