001     8806
005     20210129210447.0
024 7 _ |2 pmid
|a pmid:20005962
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2009.12.029
024 7 _ |2 WOS
|a WOS:000274810100023
037 _ _ |a PreJuSER-8806
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-HGF)0
|a Grefkes, C.
|b 0
245 _ _ |a Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2010
300 _ _ |a 233 - 242
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4545
|a NeuroImage
|v 50
|x 1053-8119
500 _ _ |a S.B.E. was funded by the Human Brain Project (R01-MH074457-01A1) and the Initiative and Networking Fund of the Helmholtz Association within the Helmholtz Alliance on Systems Biology (Human Brain Model).
520 _ _ |a Data derived from transcranial magnetic stimulation (TMS) studies suggest that transcallosal inhibition mechanisms between the primary motor cortex of both hemispheres may contribute to the reduced motor performance of stroke patients. We here investigated the potential of modulating pathological interactions between cortical motor areas by means of repetitive TMS using functional magnetic resonance imaging (fMRI) and dynamic causal modeling (DCM). Eleven subacute stroke patients were scanned 1-3 months after symptom onset while performing whole hand fist closure movements. After a baseline scan, patients were stimulated with inhibitory 1-Hz rTMS applied over two different locations: (i) vertex (control stimulation) and (ii) primary motor cortex (M1) of the unaffected (contralesional) hemisphere. Changes in the endogenous and task-dependent effective connectivity were assessed by DCM of a bilateral network comprising M1, lateral premotor cortex, and the supplementary motor area (SMA). The results showed that rTMS applied over contralesional M1 significantly improved the motor performance of the paretic hand. The connectivity analysis revealed that the behavioral improvements were significantly correlated with a reduction of the negative influences originating from contralesional M1 during paretic hand movements. Concurrently, endogenous coupling between ipsilesional SMA and M1 was significantly enhanced only after rTMS applied over contralesional M1. Therefore, rTMS applied over contralesional M1 may be used to transiently remodel the disturbed functional network architecture of the motor system. The connectivity analyses suggest that both a reduction of pathological transcallosal influences (originating from contralesional M1) and a restitution of ipsilesional effective connectivity between SMA and M1 underlie improved motor performance.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89572
|a 89572 - (Dys-)function and Plasticity (POF2-89572)
|c POF2-89572
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Cerebral Cortex: physiopathology
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Frontal Lobe: physiopathology
650 _ 2 |2 MeSH
|a Hand: physiology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging: methods
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Models, Neurological
650 _ 2 |2 MeSH
|a Motor Activity: physiology
650 _ 2 |2 MeSH
|a Motor Cortex: physiopathology
650 _ 2 |2 MeSH
|a Neural Pathways: physiopathology
650 _ 2 |2 MeSH
|a Paresis: physiopathology
650 _ 2 |2 MeSH
|a Stroke: physiopathology
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Transcranial Magnetic Stimulation: methods
650 _ 2 |2 MeSH
|a Young Adult
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a FMRI
653 2 0 |2 Author
|a DCM
653 2 0 |2 Author
|a Rehabilitation
653 2 0 |2 Author
|a Transcranial magnetic stimulation
700 1 _ |0 P:(DE-HGF)0
|a Nowak, D. A.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB75806
|a Wang, L.E.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Dafotakis, M.
|b 3
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, G. R.
|b 5
|u FZJ
773 _ _ |0 PERI:(DE-600)1471418-8
|a 10.1016/j.neuroimage.2009.12.029
|g Vol. 50, p. 233 - 242
|p 233 - 242
|q 50<233 - 242
|t NeuroImage
|v 50
|x 1053-8119
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2009.12.029
909 C O |o oai:juser.fz-juelich.de:8806
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89572
|a DE-HGF
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|g INM
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
970 _ _ |a VDB:(DE-Juel1)117987
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21