000882327 001__ 882327
000882327 005__ 20230207130621.0
000882327 0247_ $$2CORDIS$$aG:(EU-Grant)875548$$d875548
000882327 0247_ $$2CORDIS$$aG:(EU-Call)H2020-LC-BAT-2019$$dH2020-LC-BAT-2019
000882327 0247_ $$2originalID$$acorda__h2020::875548
000882327 035__ $$aG:(EU-Grant)875548
000882327 150__ $$aLithium-ion battery with silicon anode, nickel-rich cathode and in-cell sensor for electric vehicles$$y2020-02-01 - 2024-01-31
000882327 371__ $$aENWIRES$$dFrance$$ehttp://enwires.com/$$vCORDIS
000882327 371__ $$aNORTHVOLT AB$$dSweden$$ehttp://www.northvolt.com$$vCORDIS
000882327 371__ $$aFPT MOTORENFORSCHUNG AG$$bFMF$$dSwitzerland$$ehttp://www.fpt-motorenforschung.ch$$vCORDIS
000882327 371__ $$aAustrian Institute of Technology$$bAIT$$dAustria$$ehttp://www.ait.ac.at/?L=1$$vCORDIS
000882327 371__ $$aWESTFAELISCHE WILHELMS-UNIVERSITAET MUENSTER$$bWWU$$dGermany$$ehttp://www.uni-muenster.de$$vCORDIS
000882327 371__ $$aSOLVIONIC$$bSOLVIONIC$$dFrance$$ehttp://www.solvionic.com$$vCORDIS
000882327 371__ $$aEIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT$$bEMPA$$dSwitzerland$$ehttp://www.empa.ch$$vCORDIS
000882327 371__ $$aLITHOPS SRL$$dItaly$$ehttp://www.lithops.it$$vCORDIS
000882327 371__ $$aHUNTSMAN ADVANCED MATERIALS (SWITZERLAND) GMBH$$bADMAT$$dSwitzerland$$vCORDIS
000882327 371__ $$aForschungszentrum Jülich$$bForschungszentrum Jülich$$dGermany$$ehttps://www.ptj.de/$$vCORDIS
000882327 371__ $$aCoventry University$$bCoventry University$$dUnited Kingdom$$ehttp://www.coventry.ac.uk/$$vCORDIS
000882327 372__ $$aH2020-LC-BAT-2019$$s2020-02-01$$t2024-01-31
000882327 450__ $$aSeNSE$$wd$$y2020-02-01 - 2024-01-31
000882327 5101_ $$0I:(DE-588b)5098525-5$$2CORDIS$$aEuropean Union
000882327 680__ $$aThe SeNSE proposal aims at enabling next generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach 750 Wh/L. Cycling stability is the key challenge for the adoption of this cell chemistry. The objective is to reach 2000 deep cycles by (i) reducing the surface reactivity of the active materials by a combination of novel film-forming electrolyte additives and active materials coatings, (ii) compensating irreversible lithium losses during the first cycles employing pre-lithiated silicon and providing an on-demand reservoir of excess lithium in the cathode, (iii) identifying and controlling critical cycling parameters with data provided from in-cell sensors. Adaptive fast charging protocols will be integrated into the battery management system based on dynamic in-cell sensor data and by implementing thermal management concepts on materials and electrode level. To improve the sustainability of the battery and to lower production cost, the content of the critical raw materials cobalt and natural graphite will be reduced. Enabled by protective coatings, aqueous slurry processing will be developed for the cathode. Costs will be further lowered and energy density improved by the development of thinner textured current collector foils offering enhanced adhesion. The feasibility and scalability of the SeNSE battery technology with respect to the call targets will be demonstrated through 25 Ah pouch cell prototypes and a 1 kWh module. Scalability to the gigawatt scale and cost-effectiveness of the proposed solutions, including aspects of recycling and second-life use, will be continuously monitored via regular briefings led by Northvolt, which currently undertakes one of the most ambitious efforts to establish a European cell manufacturing plant at scale. To strengthen the European IP portfolio in the battery field, patent applications are the preferred way of dissemination of technology developed within SeNSE.
000882327 909CO $$ooai:juser.fz-juelich.de:882327$$pauthority$$pauthority:GRANT
000882327 970__ $$aoai:dnet:corda__h2020::c6873bc8e9744dda2abacd9dd4fb962d
000882327 980__ $$aG
000882327 980__ $$aCORDIS
000882327 980__ $$aAUTHORITY