000882689 001__ 882689
000882689 005__ 20230825115930.0
000882689 0247_ $$2CORDIS$$aG:(EU-Grant)860060$$d860060
000882689 0247_ $$2CORDIS$$aG:(EU-Call)H2020-MSCA-ITN-2019$$dH2020-MSCA-ITN-2019
000882689 0247_ $$2originalID$$acorda__h2020::860060
000882689 035__ $$aG:(EU-Grant)860060
000882689 150__ $$aMagnetism and the effects of Electric Field$$y2019-10-01 - 2024-03-31
000882689 371__ $$aUniversity of Salamanca - Centro de Investigación del Cáncer$$bCIC$$dSpain$$ehttp://www.cicancer.org/en$$vCORDIS
000882689 371__ $$aSingulus Technologies AG$$bSingulus$$dGermany$$ehttp://www.singulus.de$$vCORDIS
000882689 371__ $$aInstituto Nazionale di Ricerca Metrologica$$bINRiM$$dItaly$$ehttp://www.inrim.it/$$vCORDIS
000882689 371__ $$aUniversity of Leeds$$bUniversity of Leeds$$dUnited Kingdom$$ehttp://www.leeds.ac.uk/$$vCORDIS
000882689 371__ $$aSPIN-ION TECHNOLOGIES$$dFrance$$ehttp://www.spin-ion.com$$vCORDIS
000882689 371__ $$aUNIVERSITE PARIS-SACLAY$$dFrance$$ehttps://www.universite-paris-saclay.fr/fr$$vCORDIS
000882689 371__ $$aAALTO KORKEAKOULUSAATIO SR$$bAALTO$$dFinland$$ehttp://www.aalto.fi$$vCORDIS
000882689 371__ $$aSENSITEC GMBH$$dGermany$$ehttp://www.sensitec.com$$vCORDIS
000882689 371__ $$aEindhoven University of Technology$$bTU/e$$dNetherlands$$ehttp://www.tue.nl/$$vCORDIS
000882689 371__ $$aCNRS - Institut des Sciences Biologiques$$bINSB$$dFrance$$ehttp://www.cnrs.fr/insb/$$vCORDIS
000882689 371__ $$aParis Dauphine University$$bParis Dauphine University$$dFrance$$ehttp://www.dauphine.fr/en/welcome.html$$vCORDIS
000882689 371__ $$aJohannes Gutenberg University of Mainz$$bJohannes Gutenberg University of Mainz$$dGermany$$ehttp://www.uni-mainz.de/eng/$$vCORDIS
000882689 372__ $$aH2020-MSCA-ITN-2019$$s2019-10-01$$t2024-03-31
000882689 450__ $$aMagnEFi$$wd$$y2019-10-01 - 2024-03-31
000882689 5101_ $$0I:(DE-588b)5098525-5$$2CORDIS$$aEuropean Union
000882689 680__ $$aMagnEFi is a training network of European experts assembled to provide enhanced training and education to early stage researchers on the topic of electric field effects on nanoscale magnetic structures. The goal is to train the next generation to work in this fast rising and key field of GreenIT. Electric fields may be applied to nanoscale magnetic structures in a variety of ways: either directly as a voltage gate, coupled via a ferroelectric or piezoelectric material that strains the nanomagnet, or using light. Addressing the effect of electric fields on the properties of nanoscale magnetic structures has become increasingly important in the search for efficient methods of manipulating nanomagnetism. Research in this area is expected ultimately to lead to ultralow power devices for computation and communication with new functionalities.
The consortium that has come together to deliver this training is uniquely qualified to do so, consisting of world-leading experts in condensed matter physics and leading private companies, along with a range of associated partners spanning basic research, machine tool development, industrial and consumer products. The consortium provides a rich training environment that is both international and intersectoral, where the fellows will both study at the cutting edge of science and technology, and also come to appreciate the breadth of the field in terms of its intellectual challenges, commercial concerns and relationship to society’s need for ever more powerful information technologies with a reduced environmental footprint. This will enable them, in their future careers, to contribute to the strengthening of both the European Research Area and the European Information and Communication industry, particularly GreenIT, an especially important and growing sector for EU economic development.
000882689 909CO $$ooai:juser.fz-juelich.de:882689$$pauthority$$pauthority:GRANT
000882689 970__ $$aoai:dnet:corda__h2020::67ff5b86eedc4d15513d7962078c6b87
000882689 980__ $$aG
000882689 980__ $$aCORDIS
000882689 980__ $$aAUTHORITY