000008830 001__ 8830
000008830 005__ 20240619083319.0
000008830 0247_ $$2pmid$$apmid:20170241
000008830 0247_ $$2DOI$$a10.1063/1.3305328
000008830 0247_ $$2WOS$$aWOS:000274756000034
000008830 0247_ $$2Handle$$a2128/4665
000008830 037__ $$aPreJuSER-8830
000008830 041__ $$aeng
000008830 082__ $$a540
000008830 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000008830 1001_ $$0P:(DE-HGF)0$$aCichocki, B.$$b0
000008830 245__ $$aThe intensity correlation function in evanescent wave scattering
000008830 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000008830 300__ $$a074704
000008830 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000008830 3367_ $$2DataCite$$aOutput Types/Journal article
000008830 3367_ $$00$$2EndNote$$aJournal Article
000008830 3367_ $$2BibTeX$$aARTICLE
000008830 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000008830 3367_ $$2DRIVER$$aarticle
000008830 440_0 $$03145$$aJournal of Chemical Physics$$v132$$x0021-9606$$y7
000008830 500__ $$aJ.B. would like to acknowledge financial support from NSF Grant Nos. CBET-0348175 and CBET-0931504. J.K.G.D. and P.R.L. acknowledge financial support by the EU-FP7 Network "NanoDirect" (Contract No. CP-FP-213948-2). B.C. acknowledges support by the Deutsche Forschungsgemeinschaft (SFB-TR6, Project No. A01).
000008830 520__ $$aAs a first step toward the interpretation of dynamic light scattering with evanescent illumination from suspensions of interacting spheres, in order to probe their near wall dynamics, we develop a theory for the initial slope of the intensity autocorrelation function. An expression for the first cumulant is derived that is valid for arbitrary concentrations, which generalizes a well-known expression for the short-time, wave-vector dependent collective diffusion coefficient in bulk to the case where a wall is present. Explicit expressions and numerical results for the various contributions to the initial slope are obtained within a leading order virial expansion. The dependence of the initial slope on the components of the wave vector parallel and perpendicular to the wall, as well as the dependence on the evanescent-light penetration depth are discussed. For the hydrodynamic interactions between colloids and between the wall, which are essential for a correct description of the near-interface dynamics, we include both far-field and lubrication contributions. Lubrication contributions are essential to capture the dynamics as probed in experiments with small penetration depths. Simulations have been performed to verify the theory and to estimate the extent of the concentration range where the virial expansion is valid. The computer algorithm developed for this purpose will also be of future importance for the interpretation of experiments and to develop an understanding of near-interface dynamics, at high colloid concentrations.
000008830 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie (FUEK414)$$cFUEK414$$x0
000008830 536__ $$0G:(DE-HGF)POF2-450$$a450 - BioSoft (POF2-400)$$cPOF2-400$$fPOF II$$x1
000008830 536__ $$0G:(EU-Grant)213948$$aNANODIRECT - Toolbox for Directed and Controlled Self-Assembly of nano-Colloids (213948)$$c213948$$fFP7-NMP-2007-SMALL-1$$x2
000008830 588__ $$aDataset connected to Web of Science, Pubmed
000008830 65320 $$2Author$$acolloids
000008830 65320 $$2Author$$adiffusion
000008830 65320 $$2Author$$ainterface phenomena
000008830 65320 $$2Author$$alight reflection
000008830 65320 $$2Author$$alight scattering
000008830 65320 $$2Author$$asuspensions
000008830 650_2 $$2MeSH$$aAlgorithms
000008830 650_2 $$2MeSH$$aColloids: chemistry
000008830 650_2 $$2MeSH$$aComputer Simulation
000008830 650_2 $$2MeSH$$aDiffusion
000008830 650_2 $$2MeSH$$aLight
000008830 650_2 $$2MeSH$$aModels, Chemical
000008830 650_2 $$2MeSH$$aParticle Size
000008830 650_2 $$2MeSH$$aRadiation
000008830 650_2 $$2MeSH$$aScattering, Radiation
000008830 650_2 $$2MeSH$$aSpectrum Analysis
000008830 650_2 $$2MeSH$$aSurface Properties
000008830 650_7 $$00$$2NLM Chemicals$$aColloids
000008830 650_7 $$2WoSType$$aJ
000008830 7001_ $$0P:(DE-HGF)0$$aWajnryb, E.$$b1
000008830 7001_ $$0P:(DE-HGF)0$$aBlawzdziewicz, J.$$b2
000008830 7001_ $$0P:(DE-Juel1)130616$$aDhont, J. K. G.$$b3$$uFZJ
000008830 7001_ $$0P:(DE-Juel1)130789$$aLang, P. R.$$b4$$uFZJ
000008830 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3305328$$gVol. 132, p. 074704$$p074704$$q132<074704$$tThe @journal of chemical physics$$v132$$x0021-9606$$y2010
000008830 8567_ $$uhttp://dx.doi.org/10.1063/1.3305328
000008830 8564_ $$uhttps://juser.fz-juelich.de/record/8830/files/4665.pdf$$yOpenAccess
000008830 8564_ $$uhttps://juser.fz-juelich.de/record/8830/files/4665.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000008830 8564_ $$uhttps://juser.fz-juelich.de/record/8830/files/4665.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000008830 8564_ $$uhttps://juser.fz-juelich.de/record/8830/files/4665.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000008830 909CO $$ooai:juser.fz-juelich.de:8830$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000008830 9131_ $$0G:(DE-HGF)POF2-400$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF2-450$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSchlüsseltechnologien$$x1
000008830 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000008830 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000008830 9141_ $$y2010
000008830 9201_ $$0I:(DE-Juel1)VDB787$$d31.12.2010$$gIFF$$kIFF-7$$lWeiche Materie$$x0
000008830 970__ $$aVDB:(DE-Juel1)118029
000008830 9801_ $$aFullTexts
000008830 980__ $$aVDB
000008830 980__ $$aConvertedRecord
000008830 980__ $$ajournal
000008830 980__ $$aI:(DE-Juel1)ICS-3-20110106
000008830 980__ $$aUNRESTRICTED
000008830 980__ $$aJUWEL
000008830 980__ $$aFullTexts
000008830 981__ $$aI:(DE-Juel1)ICS-3-20110106