000884038 001__ 884038
000884038 005__ 20210130005756.0
000884038 0247_ $$2doi$$a10.1029/2020GL088845
000884038 0247_ $$2ISSN$$a0094-8276
000884038 0247_ $$2ISSN$$a1944-8007
000884038 0247_ $$2Handle$$a2128/25678
000884038 0247_ $$2WOS$$aWOS:000572406100057
000884038 037__ $$aFZJ-2020-03059
000884038 041__ $$aEnglish
000884038 082__ $$a550
000884038 1001_ $$00000-0003-0774-8647$$aKogure, Masaru$$b0$$eCorresponding author
000884038 245__ $$aFirst Direct Observational Evidence for Secondary Gravity Waves Generated by Mountain Waves Over the Andes
000884038 260__ $$aHoboken, NJ$$bWiley$$c2020
000884038 3367_ $$2DRIVER$$aarticle
000884038 3367_ $$2DataCite$$aOutput Types/Journal article
000884038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600419298_21835
000884038 3367_ $$2BibTeX$$aARTICLE
000884038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884038 3367_ $$00$$2EndNote$$aJournal Article
000884038 520__ $$aA mountain wave with a significant brightness temperature amplitude and ~500 km horizontal wavelength was observed over the Andes on 24–25 July 2017 in Atmospheric Infrared Sounder (AIRS)/Aqua satellite data. In the Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), reanalysis data, the intense eastward wind flowed over the Andes. Visible/Infrared Imaging Radiometer Suite (VIIRS)/Suomi‐NPP (National Polar‐orbiting Partnership) did not detect the mountain waves; however, it observed concentric ring‐like waves in the nightglow emissions at ~87 km with ~100 km wavelengths on the same night over and leeward of the Southern Andes. A ray tracing analysis showed that the mountain waves propagated to the east of the Andes, where concentric ring‐like waves appeared above a region of mountain wave breaking. Therefore, the concentric ring‐like waves were likely secondary waves generated by momentum deposition that accompanied mountain wave breaking. These results provide the first direct evidence for secondary gravity waves generated by momentum deposition.
000884038 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000884038 588__ $$aDataset connected to CrossRef
000884038 7001_ $$00000-0003-0577-5289$$aYue, Jia$$b1
000884038 7001_ $$00000-0002-3876-2946$$aNakamura, Takuji$$b2
000884038 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b3
000884038 7001_ $$00000-0002-6459-005X$$aVadas, Sharon L.$$b4
000884038 7001_ $$00000-0002-5652-3017$$aTomikawa, Yoshihiro$$b5
000884038 7001_ $$00000-0002-1742-3558$$aEjiri, Mitsumu K.$$b6
000884038 7001_ $$00000-0001-8615-5166$$aJanches, Diego$$b7
000884038 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2020GL088845$$gVol. 47, no. 17$$n17$$pe2020GL088845$$tGeophysical research letters$$v47$$x1944-8007$$y2020
000884038 8564_ $$uhttps://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf
000884038 8564_ $$uhttps://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf$$yOpenAccess
000884038 8564_ $$uhttps://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884038 8564_ $$uhttps://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf?subformat=pdfa$$xpdfa
000884038 909CO $$ooai:juser.fz-juelich.de:884038$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000884038 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000884038 9141_ $$y2020
000884038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYS RES LETT : 2018$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884038 920__ $$lyes
000884038 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000884038 980__ $$ajournal
000884038 980__ $$aVDB
000884038 980__ $$aUNRESTRICTED
000884038 980__ $$aI:(DE-Juel1)JSC-20090406
000884038 9801_ $$aFullTexts