001     884038
005     20260122232400.0
024 7 _ |2 doi
|a 10.1029/2020GL088845
024 7 _ |2 ISSN
|a 0094-8276
024 7 _ |2 ISSN
|a 1944-8007
024 7 _ |2 Handle
|a 2128/25678
024 7 _ |2 WOS
|a WOS:000572406100057
037 _ _ |a FZJ-2020-03059
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 0000-0003-0774-8647
|a Kogure, Masaru
|b 0
|e Corresponding author
245 _ _ |a First Direct Observational Evidence for Secondary Gravity Waves Generated by Mountain Waves Over the Andes
260 _ _ |a Hoboken, NJ
|b Wiley
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1600419298_21835
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a A mountain wave with a significant brightness temperature amplitude and ~500 km horizontal wavelength was observed over the Andes on 24–25 July 2017 in Atmospheric Infrared Sounder (AIRS)/Aqua satellite data. In the Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), reanalysis data, the intense eastward wind flowed over the Andes. Visible/Infrared Imaging Radiometer Suite (VIIRS)/Suomi‐NPP (National Polar‐orbiting Partnership) did not detect the mountain waves; however, it observed concentric ring‐like waves in the nightglow emissions at ~87 km with ~100 km wavelengths on the same night over and leeward of the Southern Andes. A ray tracing analysis showed that the mountain waves propagated to the east of the Andes, where concentric ring‐like waves appeared above a region of mountain wave breaking. Therefore, the concentric ring‐like waves were likely secondary waves generated by momentum deposition that accompanied mountain wave breaking. These results provide the first direct evidence for secondary gravity waves generated by momentum deposition.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 1
536 _ _ |0 G:(DE-Juel-1)SDLCS
|a Simulation and Data Lab Climate Science
|c SDLCS
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 0000-0003-0577-5289
|a Yue, Jia
|b 1
700 1 _ |0 0000-0002-3876-2946
|a Nakamura, Takuji
|b 2
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, Lars
|b 3
700 1 _ |0 0000-0002-6459-005X
|a Vadas, Sharon L.
|b 4
700 1 _ |0 0000-0002-5652-3017
|a Tomikawa, Yoshihiro
|b 5
700 1 _ |0 0000-0002-1742-3558
|a Ejiri, Mitsumu K.
|b 6
700 1 _ |0 0000-0001-8615-5166
|a Janches, Diego
|b 7
773 _ _ |0 PERI:(DE-600)2021599-X
|a 10.1029/2020GL088845
|g Vol. 47, no. 17
|n 17
|p e2020GL088845
|t Geophysical research letters
|v 47
|x 1944-8007
|y 2020
856 4 _ |u https://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf
856 4 _ |u https://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:884038
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)3001
|2 StatID
|a DEAL Wiley
|d 2020-02-26
|w ger
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b GEOPHYS RES LETT : 2018
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-02-26
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21