Home > Publications database > First Direct Observational Evidence for Secondary Gravity Waves Generated by Mountain Waves Over the Andes > print |
001 | 884038 | ||
005 | 20210130005756.0 | ||
024 | 7 | _ | |a 10.1029/2020GL088845 |2 doi |
024 | 7 | _ | |a 0094-8276 |2 ISSN |
024 | 7 | _ | |a 1944-8007 |2 ISSN |
024 | 7 | _ | |a 2128/25678 |2 Handle |
024 | 7 | _ | |a WOS:000572406100057 |2 WOS |
037 | _ | _ | |a FZJ-2020-03059 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |a Kogure, Masaru |0 0000-0003-0774-8647 |b 0 |e Corresponding author |
245 | _ | _ | |a First Direct Observational Evidence for Secondary Gravity Waves Generated by Mountain Waves Over the Andes |
260 | _ | _ | |a Hoboken, NJ |c 2020 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600419298_21835 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A mountain wave with a significant brightness temperature amplitude and ~500 km horizontal wavelength was observed over the Andes on 24–25 July 2017 in Atmospheric Infrared Sounder (AIRS)/Aqua satellite data. In the Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), reanalysis data, the intense eastward wind flowed over the Andes. Visible/Infrared Imaging Radiometer Suite (VIIRS)/Suomi‐NPP (National Polar‐orbiting Partnership) did not detect the mountain waves; however, it observed concentric ring‐like waves in the nightglow emissions at ~87 km with ~100 km wavelengths on the same night over and leeward of the Southern Andes. A ray tracing analysis showed that the mountain waves propagated to the east of the Andes, where concentric ring‐like waves appeared above a region of mountain wave breaking. Therefore, the concentric ring‐like waves were likely secondary waves generated by momentum deposition that accompanied mountain wave breaking. These results provide the first direct evidence for secondary gravity waves generated by momentum deposition. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Yue, Jia |0 0000-0003-0577-5289 |b 1 |
700 | 1 | _ | |a Nakamura, Takuji |0 0000-0002-3876-2946 |b 2 |
700 | 1 | _ | |a Hoffmann, Lars |0 P:(DE-Juel1)129125 |b 3 |
700 | 1 | _ | |a Vadas, Sharon L. |0 0000-0002-6459-005X |b 4 |
700 | 1 | _ | |a Tomikawa, Yoshihiro |0 0000-0002-5652-3017 |b 5 |
700 | 1 | _ | |a Ejiri, Mitsumu K. |0 0000-0002-1742-3558 |b 6 |
700 | 1 | _ | |a Janches, Diego |0 0000-0001-8615-5166 |b 7 |
773 | _ | _ | |a 10.1029/2020GL088845 |g Vol. 47, no. 17 |0 PERI:(DE-600)2021599-X |n 17 |p e2020GL088845 |t Geophysical research letters |v 47 |y 2020 |x 1944-8007 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/884038/files/kogure_grl_2020.pdf?subformat=pdfa |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/884038/files/2020GL088845.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:884038 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129125 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b GEOPHYS RES LETT : 2018 |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|