000884041 001__ 884041
000884041 005__ 20220930130250.0
000884041 0247_ $$2doi$$a10.1007/s10967-020-07376-2
000884041 0247_ $$2Handle$$a2128/26061
000884041 0247_ $$2WOS$$aWOS:000578523500022
000884041 037__ $$aFZJ-2020-03062
000884041 082__ $$a540
000884041 1001_ $$0P:(DE-Juel1)171718$$aGiesen, Kai$$b0$$ufzj
000884041 245__ $$aThermochromatographic separation of 45Ti and subsequent radiosynthesis of [45Ti]salan
000884041 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2020
000884041 3367_ $$2DRIVER$$aarticle
000884041 3367_ $$2DataCite$$aOutput Types/Journal article
000884041 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604588020_5031
000884041 3367_ $$2BibTeX$$aARTICLE
000884041 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884041 3367_ $$00$$2EndNote$$aJournal Article
000884041 520__ $$aDue to its favorable decay properties, the non-standard radionuclide 45Ti is a promising PET isotope for tumor imaging. Additionally, titanium complexes are widely used as anti-tumor agents and 45Ti could be used to study their in vivo distribution and metabolic fate. However, although 45Ti can be obtained using the 45Sc(p,n)45Ti nuclear reaction its facile production is offset by the high oxophilicity and hydrolytic instability of Ti4+ ions in aqueous solutions, which complicate recovery from the irradiated Sc matrix. Most available 45Ti recovery procedures rely on ion exchange chromatography or solvent extraction techniques which are time-consuming, produce large final elution volumes, or, in case of solvent extraction, cannot easily be automated. Thus a more widespread application of 45Ti for PET imaging has been hampered. Here, we describe a novel, solvent-free approach for recovery of 45Ti that involves formation of [45Ti]TiCl4 by heating of an irradiated Sc target in a gas stream of chlorine, followed by thermochromatographic separation of the volatile radiometal chloride from co-produced scandium chloride and trapping of [45Ti]TiCl4 in a glass vial at − 78 °C. The recovery of 45Ti amounted to 76 ± 5% (n = 5) and the radionuclidic purity was determined to be > 99%. After trapping, the [45Ti]TiCl4 could be directly used for 45Ti-radiolabeling, as demonstrated by the successful radiosynthesis of [45Ti][Ti(2,4-salan)].
000884041 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000884041 588__ $$aDataset connected to CrossRef
000884041 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b1$$eCorresponding author
000884041 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b2$$ufzj
000884041 773__ $$0PERI:(DE-600)2017242-4$$a10.1007/s10967-020-07376-2$$p1281–1287$$tJournal of radioanalytical and nuclear chemistry$$v326$$x0022-4081$$y2020
000884041 8564_ $$uhttps://juser.fz-juelich.de/record/884041/files/Giesen2020_Article_ThermochromatographicSeparatio-1.pdf$$yOpenAccess
000884041 8564_ $$uhttps://juser.fz-juelich.de/record/884041/files/Giesen2020_Article_ThermochromatographicSeparatio-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884041 8767_ $$d2020-09-06$$eHybrid-OA$$jDEAL$$lDEAL: Springer$$pJRNC-D-20-00503R1
000884041 909CO $$ooai:juser.fz-juelich.de:884041$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000884041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171718$$aForschungszentrum Jülich$$b0$$kFZJ
000884041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b1$$kFZJ
000884041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b2$$kFZJ
000884041 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000884041 9141_ $$y2020
000884041 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000884041 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884041 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-01-16$$wger
000884041 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884041 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ RADIOANAL NUCL CH : 2018$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000884041 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000884041 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000884041 920__ $$lyes
000884041 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000884041 980__ $$ajournal
000884041 980__ $$aVDB
000884041 980__ $$aUNRESTRICTED
000884041 980__ $$aI:(DE-Juel1)INM-5-20090406
000884041 980__ $$aAPC
000884041 9801_ $$aAPC
000884041 9801_ $$aFullTexts