000884059 001__ 884059
000884059 005__ 20210130005815.0
000884059 0247_ $$2doi$$a10.3390/cells9092034
000884059 0247_ $$2Handle$$a2128/25650
000884059 0247_ $$2pmid$$apmid:32899484
000884059 0247_ $$2WOS$$aWOS:000580699400001
000884059 037__ $$aFZJ-2020-03070
000884059 082__ $$a570
000884059 1001_ $$00000-0001-9246-6673$$aSiewert, Christian D.$$b0
000884059 245__ $$aHybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA
000884059 260__ $$aBasel$$bMDPI$$c2020
000884059 3367_ $$2DRIVER$$aarticle
000884059 3367_ $$2DataCite$$aOutput Types/Journal article
000884059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599758647_22337
000884059 3367_ $$2BibTeX$$aARTICLE
000884059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884059 3367_ $$00$$2EndNote$$aJournal Article
000884059 520__ $$aHybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation
000884059 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000884059 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000884059 588__ $$aDataset connected to CrossRef
000884059 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000884059 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x1
000884059 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000884059 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000884059 7001_ $$00000-0002-5517-5970$$aHaas, Heinrich$$b1
000884059 7001_ $$0P:(DE-HGF)0$$aCornet, Vera$$b2
000884059 7001_ $$0P:(DE-HGF)0$$aNogueira, Sara S.$$b3
000884059 7001_ $$0P:(DE-HGF)0$$aNawroth, Thomas$$b4
000884059 7001_ $$00000-0003-0568-9540$$aUebbing, Lukas$$b5
000884059 7001_ $$0P:(DE-HGF)0$$aZiller, Antje$$b6
000884059 7001_ $$0P:(DE-HGF)0$$aAl-Gousous, Jozef$$b7
000884059 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b8
000884059 7001_ $$00000-0002-0747-3965$$aSchroer, Martin A.$$b9
000884059 7001_ $$0P:(DE-HGF)0$$aBlanchet, Clement E.$$b10
000884059 7001_ $$0P:(DE-HGF)0$$aSvergun, Dmitri I.$$b11
000884059 7001_ $$00000-0002-3991-5721$$aRadsak, Markus P.$$b12
000884059 7001_ $$0P:(DE-HGF)0$$aSahin, Ugur$$b13
000884059 7001_ $$0P:(DE-HGF)0$$aLangguth, Peter$$b14$$eCorresponding author
000884059 773__ $$0PERI:(DE-600)2661518-6$$a10.3390/cells9092034$$gVol. 9, no. 9, p. 2034 -$$n9$$p2034$$tCells$$v9$$x2073-4409$$y2020
000884059 8564_ $$uhttps://juser.fz-juelich.de/record/884059/files/cells-09-02034.pdf$$yOpenAccess
000884059 8564_ $$uhttps://juser.fz-juelich.de/record/884059/files/cells-09-02034.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884059 909CO $$ooai:juser.fz-juelich.de:884059$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000884059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b8$$kFZJ
000884059 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000884059 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000884059 9141_ $$y2020
000884059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELLS-BASEL : 2018$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884059 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884059 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-14
000884059 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELLS-BASEL : 2018$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-14
000884059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-14
000884059 920__ $$lyes
000884059 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000884059 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000884059 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000884059 980__ $$ajournal
000884059 980__ $$aVDB
000884059 980__ $$aUNRESTRICTED
000884059 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000884059 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000884059 980__ $$aI:(DE-588b)4597118-3
000884059 9801_ $$aFullTexts