| Home > Publications database > Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA > print |
| 001 | 884059 | ||
| 005 | 20210130005815.0 | ||
| 024 | 7 | _ | |a 10.3390/cells9092034 |2 doi |
| 024 | 7 | _ | |a 2128/25650 |2 Handle |
| 024 | 7 | _ | |a pmid:32899484 |2 pmid |
| 024 | 7 | _ | |a WOS:000580699400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-03070 |
| 082 | _ | _ | |a 570 |
| 100 | 1 | _ | |a Siewert, Christian D. |0 0000-0001-9246-6673 |b 0 |
| 245 | _ | _ | |a Hybrid Biopolymer and Lipid Nanoparticles with Improved Transfection Efficacy for mRNA |
| 260 | _ | _ | |a Basel |c 2020 |b MDPI |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1599758647_22337 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 0 |
| 536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 1 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 650 | 2 | 7 | |a Soft Condensed Matter |0 V:(DE-MLZ)SciArea-210 |2 V:(DE-HGF) |x 0 |
| 650 | 2 | 7 | |a Medicine |0 V:(DE-MLZ)SciArea-190 |2 V:(DE-HGF) |x 1 |
| 650 | 1 | 7 | |a Polymers, Soft Nano Particles and Proteins |0 V:(DE-MLZ)GC-1602-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e KWS-2: Small angle scattering diffractometer |f NL3ao |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)KWS2-20140101 |5 EXP:(DE-MLZ)KWS2-20140101 |6 EXP:(DE-MLZ)NL3ao-20140101 |x 0 |
| 700 | 1 | _ | |a Haas, Heinrich |0 0000-0002-5517-5970 |b 1 |
| 700 | 1 | _ | |a Cornet, Vera |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Nogueira, Sara S. |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Nawroth, Thomas |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Uebbing, Lukas |0 0000-0003-0568-9540 |b 5 |
| 700 | 1 | _ | |a Ziller, Antje |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Al-Gousous, Jozef |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Radulescu, Aurel |0 P:(DE-Juel1)130905 |b 8 |
| 700 | 1 | _ | |a Schroer, Martin A. |0 0000-0002-0747-3965 |b 9 |
| 700 | 1 | _ | |a Blanchet, Clement E. |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Svergun, Dmitri I. |0 P:(DE-HGF)0 |b 11 |
| 700 | 1 | _ | |a Radsak, Markus P. |0 0000-0002-3991-5721 |b 12 |
| 700 | 1 | _ | |a Sahin, Ugur |0 P:(DE-HGF)0 |b 13 |
| 700 | 1 | _ | |a Langguth, Peter |0 P:(DE-HGF)0 |b 14 |e Corresponding author |
| 773 | _ | _ | |a 10.3390/cells9092034 |g Vol. 9, no. 9, p. 2034 - |0 PERI:(DE-600)2661518-6 |n 9 |p 2034 |t Cells |v 9 |y 2020 |x 2073-4409 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/884059/files/cells-09-02034.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/884059/files/cells-09-02034.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:884059 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)130905 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
| 913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 1 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-01-14 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELLS-BASEL : 2018 |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-14 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-14 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-14 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-01-14 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-14 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELLS-BASEL : 2018 |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-14 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-14 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k JCNS-1 |l Neutronenstreuung |x 1 |
| 920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
| 980 | _ | _ | |a I:(DE-588b)4597118-3 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|