000884065 001__ 884065
000884065 005__ 20210130005818.0
000884065 0247_ $$2doi$$a10.1186/s13690-020-00445-8
000884065 0247_ $$2ISSN$$a0003-9578
000884065 0247_ $$2ISSN$$a0778-7367
000884065 0247_ $$2ISSN$$a2049-3258
000884065 0247_ $$2Handle$$a2128/25647
000884065 0247_ $$2altmetric$$aaltmetric:85934996
000884065 0247_ $$2pmid$$apmid:32685147
000884065 0247_ $$2WOS$$aWOS:000553302200001
000884065 037__ $$aFZJ-2020-03074
000884065 082__ $$a610
000884065 1001_ $$0P:(DE-Juel1)184603$$aFuhrmann, Jan$$b0$$eCorresponding author$$ufzj
000884065 245__ $$aThe significance of case detection ratios for predictions on the outcome of an epidemic - a message from mathematical modelers
000884065 260__ $$aBruxelles$$bArchives$$c2020
000884065 3367_ $$2DRIVER$$aarticle
000884065 3367_ $$2DataCite$$aOutput Types/Journal article
000884065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599757561_22360
000884065 3367_ $$2BibTeX$$aARTICLE
000884065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884065 3367_ $$00$$2EndNote$$aJournal Article
000884065 520__ $$aIn attempting to predict the further course of the novel coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2, mathematical models of different types are frequently employed and calibrated to reported case numbers. Among the major challenges in interpreting these data is the uncertainty about the amount of undetected infections, or conversely: the detection ratio. As a result, some models make assumptions about the percentage of detected cases among total infections while others completely neglect undetected cases. Here, we illustrate how model projections about case and fatality numbers vary significantly under varying assumptions on the detection ratio. Uncertainties in model predictions can be significantly reduced by representative testing, both for antibodies and active virus RNA, to uncover past and current infections that have gone undetected thus far.
000884065 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000884065 588__ $$aDataset connected to CrossRef
000884065 7001_ $$0P:(DE-HGF)0$$aBarbarossa, Maria Vittoria$$b1
000884065 773__ $$0PERI:(DE-600)2133388-9$$a10.1186/s13690-020-00445-8$$gVol. 78, no. 1, p. 63$$n1$$p63$$tArchives of public health$$v78$$x2049-3258$$y2020
000884065 8564_ $$uhttps://juser.fz-juelich.de/record/884065/files/The%20significance%20of%20case%20detection%20ratios%20for%20predictions%20on%20the%20outcome%20of%20an%20epidemic%20-%20a%20message%20from%20mathematical%20modelers.pdf$$yOpenAccess
000884065 8564_ $$uhttps://juser.fz-juelich.de/record/884065/files/The%20significance%20of%20case%20detection%20ratios%20for%20predictions%20on%20the%20outcome%20of%20an%20epidemic%20-%20a%20message%20from%20mathematical%20modelers.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884065 909CO $$ooai:juser.fz-juelich.de:884065$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184603$$aForschungszentrum Jülich$$b0$$kFZJ
000884065 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000884065 9141_ $$y2020
000884065 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2019-12-20
000884065 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884065 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884065 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2019-12-20
000884065 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000884065 920__ $$lyes
000884065 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000884065 980__ $$ajournal
000884065 980__ $$aVDB
000884065 980__ $$aUNRESTRICTED
000884065 980__ $$aI:(DE-Juel1)JSC-20090406
000884065 9801_ $$aFullTexts