001     884065
005     20210130005818.0
024 7 _ |a 10.1186/s13690-020-00445-8
|2 doi
024 7 _ |a 0003-9578
|2 ISSN
024 7 _ |a 0778-7367
|2 ISSN
024 7 _ |a 2049-3258
|2 ISSN
024 7 _ |a 2128/25647
|2 Handle
024 7 _ |a altmetric:85934996
|2 altmetric
024 7 _ |a pmid:32685147
|2 pmid
024 7 _ |a WOS:000553302200001
|2 WOS
037 _ _ |a FZJ-2020-03074
082 _ _ |a 610
100 1 _ |a Fuhrmann, Jan
|0 P:(DE-Juel1)184603
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The significance of case detection ratios for predictions on the outcome of an epidemic - a message from mathematical modelers
260 _ _ |a Bruxelles
|c 2020
|b Archives
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599757561_22360
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In attempting to predict the further course of the novel coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2, mathematical models of different types are frequently employed and calibrated to reported case numbers. Among the major challenges in interpreting these data is the uncertainty about the amount of undetected infections, or conversely: the detection ratio. As a result, some models make assumptions about the percentage of detected cases among total infections while others completely neglect undetected cases. Here, we illustrate how model projections about case and fatality numbers vary significantly under varying assumptions on the detection ratio. Uncertainties in model predictions can be significantly reduced by representative testing, both for antibodies and active virus RNA, to uncover past and current infections that have gone undetected thus far.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Barbarossa, Maria Vittoria
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1186/s13690-020-00445-8
|g Vol. 78, no. 1, p. 63
|0 PERI:(DE-600)2133388-9
|n 1
|p 63
|t Archives of public health
|v 78
|y 2020
|x 2049-3258
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884065/files/The%20significance%20of%20case%20detection%20ratios%20for%20predictions%20on%20the%20outcome%20of%20an%20epidemic%20-%20a%20message%20from%20mathematical%20modelers.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884065/files/The%20significance%20of%20case%20detection%20ratios%20for%20predictions%20on%20the%20outcome%20of%20an%20epidemic%20-%20a%20message%20from%20mathematical%20modelers.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884065
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)184603
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2019-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2019-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2019-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2019-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-12-20
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21