Berghoff et al. BMC Bioinformatics
https://doi.org/10.1186/512859-020-03728-7

(2020) 21:436

BMC Bioinformatics

SOFTWARE Open Access

Cells in Silico - introducing a
high-performance framework for large-scale

®

Check for

updates

tissue modeling

Marco Berghoff', Jakob Rosenbauer?™, Felix Hoffmann' and Alexander Schug®?”

*Correspondence:
al.schug@fz-juelich.de

fMarco Berghoff and Jakob
Rosenbauer contributed equally to
this work.

2John von Neumann Institute for

Computing, Julich Supercomputer
Centre, Forschungszentrum Julich,
52428 Julich, Germany

3Faculty of Biology, University of
Duisburg-Essen, 45141 Essen,
Germany

Full list of author information is
available at the end of the article

K BMC

Abstract

Background: Discoveries in cellular dynamics and tissue development constantly
reshape our understanding of fundamental biological processes such as
embryogenesis, wound-healing, and tumorigenesis. High-quality microscopy data and
ever-improving understanding of single-cell effects rapidly accelerate new discoveries.
Still, many computational models either describe few cells highly detailed or larger cell
ensembles and tissues more coarsely. Here, we connect these two scales in a joint
theoretical model.

Results: We developed a highly parallel version of the cellular Potts model that can be
flexibly applied and provides an agent-based model driving cellular events. The model
can be modular extended to a multi-model simulation on both scales. Based on the
NAStJA framework, a scaling implementation running efficiently on high-performance
computing systems was realized. We demonstrate independence of bias in our
approach as well as excellent scaling behavior.

Conclusions: Our model scales approximately linear beyond 10,000 cores and thus
enables the simulation of large-scale three-dimensional tissues only confined by
available computational resources. The strict modular design allows arbitrary models to
be configured flexibly and enables applications in a wide range of research questions.
Cells in Silico (CiS) can be easily molded to different model assumptions and help push
computational scientists to expand their simulations to a new area in tissue
simulations. As an example we highlight a 1000% voxel-sized cancerous tissue
simulation at sub-cellular resolution.

Keywords: Tissue growth, Massively parallel, Cellular Potts model

Background

The mathematical description of organisms dates back to the beginning of the 20th cen-
tury [1]. Since then, the theoretical understanding of biology has grown steadily, showing
a more and more complex picture. With the emergence of computational models in
physics, biophysicists started to adapt those models to describe biological processes [2].
An early development describing tissue development and cell—cell interactions was the

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03728-7&domain=pdf
http://orcid.org/0000-0002-0534-502X
mailto: al.schug@fz-juelich.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 2 of 21

so-called cellular Potts model (CPM) by Graner and Glazier ‘92 [3]. This model derives
from the Potts model and describes cells as connected areas on a grid. They were able
to replicate known biological phenomena, such as adhesion driven cell sorting or tissue-
growth. From then on, experimental insight into tissue on the cellular level as well as
the power of computers has grown steadily, while the size and extent of cell-based tis-
sue simulation have not proportionally evolved. Here, we present a modular framework
for supercomputers to accommodate large-scale simulations of tissue with sub-single cell

resolution.

Related work

There are several attempts to parallelize the CPM. Scianna and Preziosi [4] give an
overview over advantages and disadvantages. Different methods were applied; for exam-
ple, shared memory approaches set a lock to the memory that is accessed from parallel
processes. Tomeu et al. [5] introduce a lock-free approach: the stencils compute concur-
rently, the write-back is only allowed if there are no other changes on the specific data,
else an unroll is done. Some authors replace the random sampling of the field in the Monte
Carlo, with a random walker that is simpler to parallelize. Gusatto et al. [6] used a mutex
for shared memory and Cercato et al. 7] used a distributed memory version. Those imple-
mentations provide a maximum speedup of 5.4 for 12 cores and a decreasing speedup for
increasing core numbers.

Another method that works for shared and distributed memory is a checkerboard
method introduced by Chen et al. [8, 9] Here, the distributed sub-domains are split into
2 x 2 x 2 parts, and only one part is active so that there is no overlap with other pro-
cesses. For this model, a trade-off between accuracy and speed has been observed. If
the sub-domain part is changed with a high frequency, a lot of communication is done
compared to the runtime. On the other side, if it changes with a low frequency, cell
movements stick to sub-domain boundaries. Tapia and D’Souza [10, 11] use this method
to implement a single Graphics Processing Unit (GPU) version. Yu and Yang [12] use
OpenCL to execute their model on GPUs and multi-core Compute Processing Units
(CPUs).

He et al. [13] present a hybrid parallel version, where the CPM is calculated in shared
memory, while additional partial differential equations use distributed memory methods.

Implementation

Cells in Silico (CiS), was implemented into the NAStJA (Neoteric Autonomous Sten-
cil code for Jolly Algorithms) framework [14, 15]. Implementing the parallel CPM into
the framework imposed several challenges, such as quasi global cell-state information
and isotropic sampling of the field. To incorporate all necessary prerequisites, the frame-
work was vastly extended to provide all the required infrastructure for large scale tissue
simulations with the CPM.

NAStJA framework

The NAStJA framework is a modular, flexible framework for massively parallel stencil
code applications. It uses the Message Passing Interface (MPI) to communicate between
processes. The entire simulation domain is decomposed into small blocks, and these
blocks are distributed to the different MPI ranks, see Fig. 1.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 3 of 21

-

@ Additional cell data ... 5" £ e : =

Field cell IDs @ -1= b
Domain decomposition \ o4 -F

- ~ \ -

N
S \ -
Q:b Q\% Q\'b Q\’b ' —

Fig. 1 The domain is decomposed and distributed to MPI ranks. So each rank holds one block. Each block
contains a field with the celllD and additional cell data. A field is a three-dimensional array on which the
compute actions are performed

Blocks represent a skeleton of the geometry, i.e., the size and position of the parallel
entity in the global domain. Stencil codes act on regular grids, called fields. The blocks can
hold one or more fields. The data inside the fields are located in voxels. Each voxel con-
tains a data value. For the calculation, a stencil containing the calculation rules is applied
to the voxels of the field. The calculation rule determines the data access pattern of the
stencil. For n dimensions with 7 neighbor accesses, the stencil is denoted DnCmu. In three
dimensions, usual access patterns are the D3C7, i.e., the central voxel plus the first six
neighboring voxels, or the D3C27 with 26 neighboring voxels, i.e., the full 3 x 3 x 3 sur-
rounding of a voxel. The neighbors are accessed read-only. Writing is always done at the
central voxel of the stencil. For a consistent parallel calculation, the field in each block is
enlarged by a halo layer, which overlaps with the neighboring blocks’ fields. In order to
keep the data in the halo up-to-date, each time-step is proceeded by a halo exchange.

After an initialization phase, NAStJA continuously runs the calculation loop. On a time-
step base, a sequence of actions is executed independently on each MPI rank. Figure 2
provides an overview of the actions used in CiS. Details to the actions will be given in later

sections.

Initialization ‘ : Monte Carlo sweep (CPM) \ Sl
| i Diffusion sweep . *.
| <
Y
i Halo exchange

1

;6

_+ Cells division
. ¢

Time loop . Signaling

V6
'+ Additional cell data exchange

\
\

¢
' Write output data

Fig. 2 The actions in one time loop are structures in modules. Additional modules can be added depending
on the simulated system

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 4 of 21

Actions that iterate a stencil over the field are called sweeps. After all sweeps and
actions, synchronization steps such as the halo exchange as well as output actions are exe-
cuted. All sweeps and actions are implemented in a modular fashion, thereby enabling a
quick alteration of the code structure by exchanging the modules or changing their order.

Additionally, NAStJA offers an interface for reading in configurations to parametrize
simulations. Get-functions are implemented that read the data for a certain config-
key from a JSON config file. This allows users to easily parametrize the simulation by
changing the config file without modifying and recompiling the code.

Parallel cellular Potts model

In the last section, we reviewed the framework, the basic structure with blocks and fields,
and the flexibility of the actions. This section first describes our implementation of the
CPM and then its parallelization.

Each voxel in the field holds an integer value that denotes a cell identifier (cellID). Voxels
that contain the same cellID belong to an individual biological cell. In addition to this
spatial cell description, each cell has a set of Additional Cell Data (ACD), e.g., the cell
volume V; the cell surface S, the cell age 9, and the cell type t (cf. Table 1).

Cell types

A cell type is assigned to each cell, determining the parametrization and phenotype of
that cell. The cell type defines the characteristics of the individual cells, i.e., the target
volume V{ and the target surface Sy (cf. Table 2). This allows a parametrization of a set
of cells instead of specifying the parameters individually. We introduced a subset of cell
types that are not participating in the spatio-temporal propagation via the CPM. Those
cells are fixed structures that can model blood vessels or the extracellular matrix, termed
solid in our framework. The particular cell type liquid denotes the surroundings of the
cells. It acts as a place holder for the growth of cells and describes the medium into which
the cells grow.

Hamiltonian
The CPM was introduced by Glazier and Graner [3] in 1992 to simulate adhesion driven
cell sorting. It is based on a Potts model that describes integer spin states on a regular

Table 1 Cell Properties (dynamically change during simulation)

Global variables (kept up to date in all blocks)

celllD The Value in the field that identify the cell
Volumes The cell Volume

Surface The cell surface (side counting or marching cubes)
Birth Time of initialization of the cell

Type The cell type

Center of mass Center of mass of the cell.

Signal vector Signal content of each signal within the cell

Temporary variables (block internal)

Cell neighbor surfaces Shared surfaces with neighboring cells
AVolume Volume change during a MCS
ASurface Surface change during a MCS

ASignal Signal changes during a MCS

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 5 of 21

Table 2 Cell type properties (set by config file)

Parameter Description

Vo Target volume

So Target surface

Ay Volume coupling factor

As Surface coupling factor

Ajj Adhesion coupling matrix

Size change constant rate of change of V and Sy
Diffusion matrix Diffusion constant matrix

Signal decay Signal decay per time-step (relative and absolute)
Constant signal Has constant signal

Start signal Cells of this type are initiated with the signal content
Division

Rate Division rate

Age Minimum division age

Signal thresholds Minimum and maximum signal value
Mutation matrix Probability to mutate to another type
Cell death

Apoptotic cell type Cell type of the apoptotic cells

Rate Cell death rate

Age Minimum cell age

Signal thresholds Minimum and maximum signal value

lattice, in both two and three dimensions. The temporal propagation of the system is per-
formed by Monte Carlo Sweeps (MCSs) over the field. Nearest neighbor interactions are
evaluated by energy functions and are accepted with the Metropolis criterion. A Hamilto-
nian energy function defines the system energy, denoted as a sum of energy contributions
E;, weighted with A;. It reads,

Hcpm = Z)\'iEi

12

=y) (W(S) = V() +1s Y (s(s) — S(x(5)))*

seC ceC
: Cell volumes ! Cell surfaces !
+ Z Z Arpei) (1 =8 (s06)) +--

i€Q jeN(i)
L]

Cell-to-cell adhesion

where C is the set of all cells, @ is the whole domain, and N (i) are the neighbors of
voxel i. Further, ¢; is the corresponding cell at voxel i, and g; is the corresponding cell at
the neighboring voxel. Cell-to-cell adhesion is modeled by an energy contribution that is
proportional to the shared surface of different cells. A is the adhesion coefficient matrix
giving the adhesion between two cells of types 7(g;), T(g)), 8 is the Kronecker delta. v(¢)
is the volume of cell ¢, V(7 (¢)) is the target volume of the cell type, Xy is a coupling term
regulating the strength of the volume constraint. s(g;) is the surface of cell ¢, S(z(s;)) is
the target surface of the cell type, A is a coupling term adjusting the strength of the sur-
face constraint. The ellipsis indicates that the energy can be extended with various energy
contributions.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 6 of 21

The system propagation in the CPM is based on nearest-neighbor interactions. The
cellID of a voxel can be changed to the cellID of a randomly chosen nearest neighbor
voxel. Then, the energy difference AE of this local confirmation change is calculated via
the change of the Hamiltonian energy function. Changes with negative energy differences
are accepted, and positive energy differences have an exponentially decaying acceptance
probability

1, if AE <0,

Paccept = exp(—AE/T), otherwise.

This is the Metropolis acceptance criterion with temperature 7.

Energy calculations

The modularity of CiS allows adding various energy functions to the Hamiltonian. Each
energy function gets the stencil and the direction of the neighbor as input parameters
and returns the energy difference AE and local change of the surface and volume (AS
and AV). In the function, the magnitude of the energy is determined by the internal cell
states, as well as the corresponding coupling terms A.

Surface Calculation The calculation of the surface of objects on a cubic grid is not
unique. Depending on the chosen surface metric, dependencies may occur that prefer
some spatial directions, leading to anisotropies in the emerging structures. Traditionally,
a Manhattan metric is used to calculate the surface in the CPM. With this metric, the
distance d between two points a, b is defined by the sum of the absolute differences of
their coordinates, d(a,b) =), | a; — b; |. In two dimensions, this corresponds to count-
ing edges of pixels and in the three-dimensional to counting surfaces of voxels. With this
metric, a unit circle has the same surface as a unit square. Likewise, in three dimensions,
an ideal sphere of diameter a corresponds to a cube of edge length a after minimizing the
surface. Particularly in the three-dimensional case, cell clusters tend to assume a cubic
shape, when using the Manhattan distance for the surface calculations, introducing a non-
isotropic grid dependence in the model. In order to ensure a more isotropic sampling of
the field and to diminish grid artifacts, we use the marching cubes algorithm [16, 17].
The centers of eight adjacent voxels form the edges for the cube of the marching cube
algorithm. Then, we distinguish between all edges that have the cellID that surface is cal-
culated and all other celllDs. Technically, we calculate the iso-surface for 0.5 by set the
corners of the calculated cellID to 1 and all others to 0. The surfaces of both algorithms
are presented in Fig. 3.

Volume Calculation The volume calculation is either done by counting the voxel or
using the marching cube algorithm to approximate the volume.

Adhesion Calculation The adhesion energy difference is calculated by using the differ-
ent surface metrics (side counting or marching cubes) to determine the change in shared
surfaces between cells. The energy difference is determined by weighting the surface
difference with the adhesion coupling matrix A.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 7 of 21

N\

Fig. 3 Manhattan surface calculation (left) and a two-dimensional representation of the marching cube
surface calculation (middle). With a surface of the red cell 8 using side counting (6.24, marching cubes), blue
and green cells 6 (5.12). The marching cubes are shifted at denoted by the black rectangle, i.e, each voxel
contributes to four marching cubes in 2D and eight in 3D space. The right side shows a detailed version of
one marching cube, determined the surface for the red cell. The edges get the value 1 when it lies inside the
red cell, 0 otherwise. The surface then is the 0.5 iso-line

Parallelism

While being propagated in parallel, the entire field has to be consistent. A stencil is needed
for the calculation, which writes at the central position while reading from the neighbor-
ing voxels. For neighboring voxels located outside of the current block, a copy of the data
from neighboring blocks is available due to the halo exchange. The halo data is constant
during a Monte Carlo Sweep (MCS), consisting of a certain amount of Monte Carlo steps.
To keep the halo data consistent with the neighbor block’s data, the neighbor must not
change the values read by the stencil. Therefore, it must be ensured that the neighbor-
ing voxels that are read have not been changed. This strategy is essential for all voxels in
the halo. Since each voxel requires a uniform chance of sampling, we extend this condi-
tion to the entire field. Consequently, all read values within an MCS are from the previous
time-step. Hence, the field data read within an MCS is independent of the access order.

To ensure the separation of read and written data, we introduce voxel-wise disjoint sub-
sets similar to the black and white squares on a checkerboard. These subsets are regularly
distributed over the entire domain, and only one subset is set active, i.e., only these voxels
can be changed during system propagation. Note, the stencil can read all other voxels for
the calculations. On the one hand, this ensures a uniform access pattern by not handling
the boundary separately. On the other hand, it ensures that a stencil with a white center
only reads from black fields. This satisfies the prerequisites described above.

During one MCS, the cell properties, such as surface and volume, stay constant. All
changes in those properties are accumulated to delta storages, e.g., AS and A V. After one
MCS, a synchronization step exchanges the halo and the deltas. The subsequent MCS
acts on another active subset.

Checkerboards
The stencil size determines the number of necessary disjoint subsets. Figure 4 (left) shows
a two-dimensional representation of the checkerboard for the D3C7-stencil.

Here, we need two subsets since the stencil only accesses the six nearest neighbors. To
stay in the analogy, we denote each subset as a color of the checkerboard. For a given
voxel, e.g., the red dot on the white voxel, the direct neighbor voxels are read but are not
allowed to change. Diagonal neighbor voxels and the next-nearest neighbor voxels can
change, so here a stencil calculation can be performed. In three dimensions, the layer in
the front and the back are shifted by color.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 8 of 21

Fig. 4 A two-dimension representation of the D3C7- or a D3C27-stencil (A 3D stencil with 7 or 27 active
voxels, respectively) with the two-colored (left) and eight-colored (right) checkerboard. The white subset is
active and hence read and write accessible, while the other colors are read-only. The red dot represents the
actual stencil position, and the red surrounding marks the input voxels. The red crosses mark the next
possible stencil position in x- and y-directions

Figure 4 (right) presents the eight-colored checkerboard for the D3C27-stencil. The
diagonals are used by the stencil itself so that the next stencil can only act on the voxel’s
next-nearest neighbors. In three dimensions, the layer in the front and the back use four
different colors.

To achieve a uniform probability across the whole field, two or eight MCSs are required
for the two- or eight-colored checkerboard, respectively.

Quality of pseudo-random numbers

Pseudo-random number generators in parallel applications can produce unintentional
patterns [18]. This happens when the sequences overlap in different ranks, and the par-
allel entities use the same numbers. We use a standard generator based on the Mersenne
Twister algorithm. Per MPI rank, one generator is used and initialized based on the MPI
rank, so each generator starts on a different position in the random number sequence.
We use the generator for all random numbers, e.g., random access and energy acceptance.
Depending on the local domain data, a varying amount of random numbers is generated
per Monte Carlo step. Therefore blocks with overlapping random number sequences,
which is statistically extremely unlikely, do not correlate since the random numbers are
used for various purposes.

Visitor pattern

We introduce a linear random access pattern. Therefore, the field on the active color is
accessed in a linear walk. Since the volumes and surfaces are only updated after a complete
MCS, large changes in volume or surface in one sweep produce unwanted behavior since
the stored value strongly differs from the actual value. To restrict this discrepancy only
a subset of all possible positions is sampled to avoid overshooting the changed parame-
ters. Instead of randomly sample the whole field, we go linearly through the field while
skipping a random amount of voxels until the end of the field is reached. By using this
linear access pattern cached data can be reused and cache misses can be avoided. We
use preliminary virtual voxels to ensure that the first voxel in the sweep is also selected
uniformly.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 9 of 21

Fig. 5 (a) Valid and (b) invalid distribution of an cell (blue) over blocks (dashed rectangles). The invalid object
distribution overlaps three blocks in x-dimension. The size of the cell is larger than the size of one box

Localize global information

The halo exchange ensures the consistency of the field data. Additionally, it must also be
ensured that the ACD is updated after each MCS. Each block containing a part of a cell
must have up-to-date ACD for that cell. A global exchange using collective MPI functions
does not scale very well. However, introducing minor prerequisites allows an exchange
of the ACD to all requiring blocks with local communications. If we limit the exchange
to the first 26 neighbors, one cell may only stretch beyond the block boundaries on one
side per dimension. Consequently, the cell size must be smaller than the block size per
dimension, as shown in Fig. 5a. This can be guaranteed if the size of the cells is limited or
the block size is large enough.

If a cell is illegitimate large and overlaps three blocks, as shown in Fig. 5b, a ACD
exchange will not update consistently in all blocks. The changes in the left blocks do not
reach the right blocks and vice versa.

The exchange is performed after each MCS as shown in Fig. 6.

A message is created that stores the ACD and additional exchanged information. For
example, for each cell in a block the values of volume and surface as well as the delta
volume and delta surface are stored this message package. Then, the package is sent to
all 26 neighbors, received and unpacked. As soon as the data has been received from all
neighbors, it can be processed. The sent deltas are accumulated to calculate the absolute
values. Since cells move, they can newly enter into blocks. So, in addition to the changes of
volume and surface, their absolute values must be transferred, such that the newly entered
blocks can calculate the current volume and surface from the changes. The amount of
transferred data depends on the number of different cells and the number of different

Fig. 6 Local neighbor exchange in two dimensions. The center block (blue) (a) sends to eight neighboring
blocks and (b) receives from the same eight neighbors

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 10 of 21

types of values. Details of this exchange can be found in Ref. [19]. Each block holds the
ACD for all cells, which are inside the block or in the halo. ACD for cells that are no longer
in the block or halo is removed.

Cell events

Single-cell events have to be processed simultaneously on all blocks that hold a part of
the specific cell. Therefore, single-cell events are split into two steps. The first step is the
determination step, where events are detected and determined. This only happens in one
block, namely the block containing the center of mass of the cell. The event is not executed
immediately. The instruction is propagated to all adjacent blocks via the ACD exchange.
In the following time-step, the execution step is processed in all blocks containing the cell.
Here, the single-cell event is then executed consistently across all involved blocks.

Sanity action

As described above, the efficient parallel calculation requires a restriction of the cell size.
Since we cannot have absolute control over every cell via the stochastic process, some sin-
gle voxels may detach from a cell. Some references prevent this non-biological behavior
directly in the energy calculation [20]. Here, we detect single voxels of a celllD without
direct contact and replace them with liquid. In the rare event that several connected vox-
els detach, the identification of a segment is complex and cannot be calculated locally. In
this case, we have two options, (i) we delete all voxels outside a predefined radius around
the cell center, or (ii) we ignore the voxel detachment as long as it does not violate the
requirements. Le., if the cell and the voxel segment are moving away from each other, the
condition that a cell can only go beyond one block boundary per dimension can be vio-
lated, which in turn leads to inconsistencies. This is detected within the ACD exchange,
and the premature death of the cell will be inaugurated. If an ACD exchange receives ACD
for one cell from opposite sides, then a so-called Message of Death (MoD) will be gen-
erated. This MoD is sent for two time-steps to all 26 neighbors, stored and forwarded to
the neighbors of the neighbors. And finally, the cell is deleted simultaneously from all 125
neighbor and next-nearest neighbor blocks. This ensures that the cell is deleted from all
blocks in which it can occur, and resolve the inconsistencies.

Agent-based cell actions

In addition to the system propagation described by the CPM, CIS provides several mod-
ules that allow multi-model simulation of more complex systems. These modules are
using NAStJA’s action system and are implemented as actions acting on the cell objects
directly. Cell attributes such as the cell age, the signal level, cell type, etc. are append to
the ACD. Actions act depending on these values.

Signal and nutrient transport

The simulation considers the transmission and propagation of multiple substances, such
as nutrients and drugs. We define a class of signaling, e.g., nutrient contents, of each cell
al.(g) , denoting the concentration of signal ¢ in cell i. Those represent nutrients for the
cell (e.g., oxygen, glucose, or an effective nutrient concentration), cell-to-cell signaling
compounds, or arbitrary drugs. Diffusion is approximated by a flow through the cells’
surfaces.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 11 of 21

Diffusion The diffusion of signals between the cells occurs through the surface of these
cells. We determine the shared surface S;; for each pair of cells i,j with i # j. The shared
surfaces of cells are determined in a sweep over the field that locally saves the neighbors
as well as the respective shared surface of each cell. The diffusion depends on the type
of cells, so we define for each combination of types a diffusion constant Dy ;) (), (i)
denoting the cell type of cell i. The flux]i(,;é')) for a signal ¢ is defined by

Sii S;;
(0) ij ij (0) (0)
1= (545 o (5 01,
i j

where S; is the surface from cell i and o; is the signal value in cell i and S}, o; from cell j,
respectively. This is the arithmetic mean of the two surface fractions with respect to the
common surface. The flux J;; is subtracted from the delta signal of one cell and added
to the other. Here, we distinguish between cells and fixed signal suppliers, such as blood
vessels. For fixed signal suppliers, the signal content is kept constant, i.e., the flux is nei-
ther subtracted nor added for those cells. In order to keep the signal contents of all cells
up to date, the delta signals are communicated with the ACD exchange to all neighboring
blocks.

Decay Metabolic processes take place inside the cells, those as well as other signal deplet-
ing processes are described by the signal decay. In our model, the signals are changed
relative to their value,

Gi(g)’ — 49 ;@

t+1_ (i) i t’

d(Q)

where o9 ‘ is the signal g in cell i at time ¢ and d_ ;) is the relative change of the signal ¢

i

depending on the type of cell i.

Division and mutation
Cell division is a fundamental property of tissue development. During a cell division, one
mother cell splits into two daughter cells. Those daughter cells usually inherit the proper-
ties of the mother cell, but in special cases such as asymmetric cell division and mutations,
the properties can differ.

In each time-step, each cell is checked for cell-division. Whether a cell divides depends
on several internal and external factors. Division happen with the division rate Rp;j, when
the following conditions are fulfilled:

e Volume above a threshold V > Vp;, = 0.9 - V.
e Nutrition above a threshold Cpivmin-
e Age above a certain threshold Agep; sin-

Then, a random plane through the cell center as well as a new cell type (see “SMutation”
section) is chosen. To ensure synchronous execution, this decision is then communicated
to all neighboring blocks as described in “§Cell events” section. In the next time-step, the
cell is split along the previously determined plane. The cell is split, and the two arising
cells are reinitialized while measuring surface and volume. One keeps the cellID of the
mother cell while the other receives a new cellID. After a cell division, the cellular age is
set to zero for both daughter cells. Post division, both cells expand enforced by the volume
and the surface energy term. Specific cell types can also be excluded from cell-division.

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 12 of 21

Mutation Mutation can occur with a rate of Ry, which is defined per cell type. If a
mutation is accepted, one of the daughter cells is assigned a randomly selected cell type. A
transition matrix between all cell types can be defined so that the transition probabilities
between cell types vary. If no mutation occurs, the new cell inherits the type of the mother
cell.

Cell death
The cell death is implemented with a death rate of Rpeath, when the following conditions
are fulfilled:

e Nutrition below a threshold Cpegath.
e Age above a certain threshold Agep.,imin-

Furthermore, cells dying with a reduced death rate Rpeath/1000 to account for natural
cell death. To ensure simultaneous execution of a cell death across all blocks, the death
decision is communicated to all neighboring blocks as described in “§Cell events” section.
Cell death is induced by changing the cell type to a dedicated cell type that describes
dying cells. For this cell type the target volume in the Hamiltonian is changed over time
Voapop(t) = Vo — x - age, effectively lowering the volume of the cell to zero voxels with
a linear temporal dependence on the factor y, that can be set for each cell type. Once the
cell reaches V' = 0, the cell and its ACD are deleted.

Output

NAStJA provides several input and output methods. In the following, we present the
relevant writers for CIS. A writer is an action that can prepare, collect, and write out sim-
ulation data. The time resolution of the output can be chosen so that every n MCS an
output frame is created.

Cellinfo

The Celllnfo writer outputs the ACD data of all cells to a comma-separated values (CSV)
file per frame. The first line is a header that describes the parameter in each column. Each
other row contains the data of one cell, e.g., cell type, age, volume, surface, center of mass,
signals. Technically, each worker process creates the output of all cells that center of mass
is inside its blocks. A master process collects this and writes it to a file.

Parallel VTK

The field data containing the celllDs is written to a file in parallel using MPI-IO. Resulting
in a single binary VTK image (VTI) file per frame. The file contains the whole simulation
domain stored in a regular grid similar to a three-dimensional (3D) image. Each value is
represented by a 32 bit or a 64 bit integer value, depending on the expected number of
total cells. While CSV is a simple text file format, it can be easily read and processed.
The VTI files can be read with the Visualization Toolkit (VTK) that provides a python
binding and is supported by visualization software like ParaView. These file formats (.csv
and .vti) together provide maximum interchangeability with other tools. Furthermore, we
developed the NAStJA viewer. A fast and lightweight, quasi 3D visualization software that
natively supports the combination of VTI and CSV files, as demonstrated in Fig. 7. It is
freely available under https://gitlab.com/nastja/viewer.

https://gitlab.com/nastja/viewer

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 13 of 21

®0e NAStJA viewer | output_cells

Y [50]

2[50]
Coordinates:

x [0, 49] 49
y [0, 49] 49
z [0, 49] 22

Value:

Mapping: Typ

Max:(2

Min:|0

__

Fig. 7 The NAStJA viewer visualizes a slice of the domain. Black outlines mark cells, and the color represents a
post-processing value denoting the neighboring to specific cell types

Results and discussion
In this section, we first show that the changes to the traditional model necessary for
parallelization do not change the behavior of the model. Then we show the parallel

performance and usage.

Statistical analysis

We verified that the execution in our parallelized framework does not distort the model
behavior and does not depend on the chosen subdivision. We run 60 simulations with two
cells distributed to 2 x 2 x 2 blocks. We use cubic blocks, such that a block size of 100
refers to a cubic block with an edge length of 100 voxels without the halo. In the following,
we write for cubic blocks shortly 100 &7. The one cell is set to the center of one block
and the other cell is set to the edge of all blocks, i.e., to the center of the whole domain.
The cells have Vy = 1000 and So = 1400. The marching cube algorithm is used for the
surface calculations. Figure 8a shows the average over all simulations of the fluctuation in
volume and surface over 250 000 MCSs, on the left side, the center cell and on the right
the edge cell.

The behavior does not differ depending on the position within the subdivided field,
i.e., a cell overlapping two blocks does not experience any directional bias. The tempo-
ral variation in surface and volume is statistically around 3%, this is due to the thermal
fluctuations introduced by the metropolis criterion as well as a minor contribution of the
delayed update of volumes and surfaces. Figure 8b shows the average position of cell cen-
ter. Note, the cell centers are represented by an integer value denoting a specific voxel.
The center of the cell statistically moves around the original position to a very small extent

Berghoff et al. BMC Bioinformatics

(2020) 21:436

Volume V/Vp &

1.05 1

0.95

1.05

Surface S/Sg

0.95 |

50 100 150 200 250 50 100 150 200 250
Time t/100 MCS Time t/100 MCS

—
(o)
=

0.4 T]

h
bbb) 4

1 PR DU G
. _'..14”".” f v ‘\'\" il'\-'l |~/
W | o

) ifie
AR 7
o '\n‘-'\'- h 47 ify w

o 1
o i

R ‘.M
) DA
l)"‘"”‘l R

Mean movement m/voxels
_-:.‘-!
= i3
=
-3

0 ’M \ | " Il\‘
1) 'N [
- | Nl L -
it ISl PR S R B
1 el A
—-0.4 M i
0 50 100 150 200 250 0 50 100 150 200 250

Time t/100 MCS Time t/100 MCS

Fig. 8 (a) Ratio of the surface and volume to the goal values (Vo and So) respectively (averaged over 60
simulations, shaded area indicates standard deviation). In the left plots the cell lies in the center of a block, on
the right, the cell overlaps all eight blocks. (b) Movement of the cell center in the absence of an external
potential. Averaged over 60 simulations

(0.4 voxels) in comparison to the extent of the cell (10 voxels). The movement of the cells
also does not depend on the position within the subdivided field. These results confirm
the strategy of the parallelization is valid.

Performance and scaling

We use a single node (kasper) and the high-performance computing systems ForHLR II
at the Karlsruhe Institute of Technology (fh2) and JUWELS at the Jillich Supercomputing
Centre to perform the performance and scaling tests. The single node has two quad-core
Intel Xeon processors E5-2623 v3 with Haswell architecture running at a base frequency
of 3 GHz, and have 4 x 256 KB of level 2 cache, and 10 MB of shared level 3 cache. The
node has 54 GB main memory.

The ForHLR II has 1152 20-way Intel Xeon compute nodes [21]. Each of these nodes
contains two deca-core Intel Xeon processors E5-2660 v3 with Haswell architecture run-
ning at a base frequency of 2.6 GHz, and have 10 x 256 KB of level 2 cache, and 25 MB of
shared level 3 cache. Each node has 64 GB main memory, and an FDR adapter to connect
to the InfiniBand 4X EDR interconnect. In total, 256 nodes can be used, which are con-
nected by a quasi fat-tree topology, with a bandwidth ratio of 10:11 between the switches
and leaf switches. The leaf switches connect 23 nodes. The implementation of Open MPI
in version 3.1 is used.

JUWELS has 2271 48-way Intel Xeon compute nodes [22]. Each of these nodes con-
tains two 24-core Intel Xeon Platinum 8168 with Skylake architecture running at a base
frequency of 2.7 GHz, and have 24 x 1 MB of level 2 cache, and 24 x 1.375 MB of level

Page 14 of 21

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 15 of 21

3 cache. Each node has 96 GB main memory, and an InfiniBand 4X EDR interconnect.
ParaStation MPI in version 5.4 is used.

Node-level We run single-core CPM simulations including boundary condition (halo
exchange) and the ACD exchange with sending and receiving on the same core. Since
the cores in one processor have a shared level 3 cache and we want to avoid the related
effects, we run a single-core application on each core simultaneously. Two different access
patterns are used, a random access to the active checkerboard color and our linear access
using a random jump width. Both methods use a mean voxel step width of 40. We vary
the block size and compare the performance of the code in Fig. 9.

As a metric we use the number of million Monte Carlo step attempts per second
(MMC:s/s). The pure MCS (execution time of CPM-sweep) performance reaches the max-
imum of 37.8 MMCs/s for 20 &3 blocks with a voxel step width of 40 (yellow line) It
decreases until 100 C0 and stays more or less constant for larger block sizes. The peak is
clearly defined by the level 2 cache that has a maximum capacity of an equivalent 32 &7
block, but is not exclusively usable by this data. Even if the whole block does not fit into
the cache, we can profit from the property of the stencil to access only three layers of the
field, the three layers are cached by the level 3 cache, and the data can be reused. The level
3 cache has a capacity of an equivalent of a 68 &J block, so that until this size no access to
the main memory is needed. This describes the slope change in the curve at a block size
of 60 . The random access pattern can not benefit so much from caching the field and
reaches only a peak performance of 4.6 MMCs/s.

The total time-step including exchange and cleaning stages, reaches a peak-
performance of 11.4 MMCs/s at a block size of 40 O for the linear access pattern, and
3.5 MMCs/s for the random access pattern, respectively. Here, we see that the overlap of
the calculation and a nearly constant management overhead shifts the peak to a larger

block size.

Scaling For testing the parallel scaling and efficiency, we use weak scaling. The sim-
ulation is initialized as a densely filled area of cells with a volume of 512 voxels each.
The MCS used a mean step-width of five, with the eight-colored checkerboard. Signal
diffusion is enabled. For each core we use one block, the size is varied from 20 G to

40
» linear MCS —»—
= .
I linear total - +-
=301 rnd MCS - --
= rnd total
£
Y20 -
c
©
3
910 -
o]
a
K e N R e~ g
0 | T T T T T T T T V\V T T f
10 20 30 40 50 60 70 80 90100 150 200 250

Block size

Fig. 9 Cache usage and performance of the pure MCS and the total time-step for a linear access pattern with
random step width (linear) and a pure random access pattern (rnd)

Berghoff et al. BMC Bioinformatics

(2020) 21:436

100 &@. Each simulation runs three-times on 1 to 256 nodes on fh2 and 1024 nodes on
JUWELS. The largest simulations are containing approximately 100 million individual
cells. Figure 10 shows the scaling performance and efficiency for up to 49 152 cores on
JUWELS.

The efficiency n = T1/T,, where T} is the reference time for one node and T, is the
time for # nodes. On JUWELS (10b) two ranges can be recognized. First the small blocks
(20 87-40) which show a high performance in the beginning and slow down with many
cores, 128 nodes for 20 88 or 256 nodes for 3060 and 40 &P. The large blocks (60 G2-100 GF)
do not reach the maximum performance, but do not drop down much and reach an effi-
ciency of 60% on 49k cores. Up to 128 nodes (6 144 cores), a parallel efficiency of over 85%
is reached for the small blocks. For more nodes, the communication overhead becomes
significant compared to the calculation time for the small blocks. The gap between the
small and large blocks reflects the influence of the cache examined in the previous section.
Note that the block size 50 B0 benefits from the cache for one node, but not for two and

more nodes. The efficiency based on two nodes would show a scaling similar to the larger

blocks.
(a)
&
]
-l
=
£
9]
v
c
©
£
2
9]
a
0 T T T 0 | | |
320 20 80 320 1k 5k
Cores
(b) 1t
£ ' 5\ S
=) 0.8 " \(\.\ R
3l \ \) \\+\
£ 06| ° et
[} y e \\ \
4 +- 4 \
c N \
© 0.4 - % v\
€ Rt T
R i
F 0.2
a
o | | | | 0 I | I |
48 12 768 3k 12k 49k 48 192 768 3k 12k 49k
Cores Cores
20 —— 40 --+-- 60 80 -+ 100 -—+-
30 -+- 50 -+ 70 -=+- 90 - +-

Fig. 10 Weak-scaling performance per core on fh2 (a) and JUWELS (b) in MLUP/s, i.e,, scaled by the number
of voxels per block. Efficiency of the scaling on fh2 () and JUWELS (d) of the CPM simulations, for the entire
time-step, including halo- and ACD-exchange. The error bars denote the slowest and fastest run

Page 16 of 21

Berghoff et al. BMC Bioinformatics

(2020) 21:436

On the fh2, the performance per core lies between the small and large blocks on
JUWELS. Compared to all blocks, only the 20 &0 shows a slightly better performance. The

efficiency on 256 nodes (5 120 cores) is 80% — 90%.

User interface

The model parameters can be flexibly specified through a JSON config file. Multiple field
initialization functions allow the placement of cells in the field. The placement of single
cells at defined positions, as well as sets of cells in predefined shapes (cubes and spheres),
are possible. Figure 11 list a example config file. The result is presented in Fig. 7.

{
"Application": "Cells",
"CellsInSilico": {
"energyfunctions": ["VolumeOO",
"liquid": 0,
"checkerboard": "01",
"temperature": 50.0,
"surface" : {
"default": [0, 500, 500],
"lambda": [0.0,2.0,2.0],
"sizechange": [0, 0, 0]
},
"volume" : {
"default": [0, 400, 4001,
"lambda": [0.0,4.0,4.0],
"sizechange": [0, 0, 0]
},
"adhesion" : {
"map": [[0.0, 0.0, 0.0],
[0.0, 50.0, 5.0],
[0.0, 5.0, 10.0]1]
}
},
"Filling": {
"cells": [
{
"pattern": "voronoi",
"shape": "sphere",
"box": [
"celltype": [O, 50, 501,
"center": [25,25, 2517,
"count": 100,
"radius": 10
}
1,
"initialoutput": true
},
"Geometry": {
"blockcount": [1,1,1],
"blocksize": [50,50,50]
},
"Settings": {
"randomseed": 42,
"timesteps": 1000000
},
"Writers": {
"CellInfo": {
"steps": 2000,
"writer": "CellInfo"
},
"ParallelCells": {
"field": "cells",
"outputtype": "UInt32",
"steps": 2000,
"writer": "ParallelVtkImage"
}
},
"WriteActions": ["ParallelCells"
}

"SurfaceO1",

[15, 15, 15],[35, 35, 3511,

Fig. 11 Minimal example of a config for a cell simulation

>

"CellInfo"]

"Adhesion00"],

Page 17 of 21

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 18 of 21

Since the actions, sweeps, and energy functions are modularly designed, it is possible to
add specialized and additional code to the system by simply adding a function in a C++
file. Each function is documented in the code and input and output specifications are
specified in the doxygen documentation of the code.

Currently, CiS is under heavy development to introduce new Features to discover new
effects. Since NAStJA already provides a GPU infrastructure, we plan to provide a multi
GPU implementation.

Without bias on the subdivision and grid, the model enables larger simulated volumes
than other implementation of the CPM. These large scales allow us to study, among many
other applications, emergent behavior of single-cell shapes to macroscopic tissues as well
as tissue scale effects. Figure 12 shows a simple tumor model [23], in which a tumor seed
grows through cell divisions into a large tumor.

Cells can acquire new types at cell division, corresponding to mutations in cells that
yield new phenotypes. Cell division and cell death, depending on the availability of
nutrients, which are distributed from a set of stationary blood vessels. Through the
parametrization of a set of phenotypes, tumor development and the emergence and evo-
lution of heterogeneity can be observed and tracked. The simulation yields a trajectory
of each individual cell through time, giving access to all properties. Here, the effect of
single-cell properties can be observed at a tissue scale. Tissue scale effects, such as fin-
gering growth and a necrotic core, are also observable. Simulations are performed on a
field consisting of 1000 x 1000 x 1000 voxels and including 10° cells with 1000 voxels

Fig. 12 Evolution of a tumor using CiS. Starting from a few tumor cells, the cancer grows along the
nutrient-supplying blood vessels. For a clearer view, the surrounding healthy cells are not visible

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 19 of 21

each. The calculation was distributed to 1 000 CPU-cores and simulated for 24 h on the
high-performance computing (HPC) system JUWELS [22]. The reached simulated time
is around nine months in real-time.

Conclusions

We introduce a parallel implementation of the cellular Potts model (CPM) and demon-
strate that the parallelization is bias-free. Around the CPM we developed the extendable
parallel simulation framework Cells in Silico (CiS) for the simulation of tissue growth.
CiS provides a user-friendly environment to implement new models. It provides an excel-
lent scalability on supercomputers with a parallel efficiency of up to 90% on a small
machine (fh2) with 5120 cores. Larger simulations show an efficiency of up to over 60%
for 49152 cores, the lower efficiency is explained by an additional layer of switches,
which is required for large simulations. The demonstrated performance per core for a
full time-step is between 1 and 3.5 MLUP/s depending on the block size and the num-
ber of cores. With this scaling behavior, CiS enables large-scale tissue simulations up to
some mm’s and millions of interacting cells, while providing a geometric shape resolution
of individual cells. Additionally to the geometry resolved cell simulations, we provide an
agent-based model running in parallel performing single-cell events such as cell divisions,
mutations, and cell death. Signal and nutrient transport through the tissue are enabled
by a diffusion and signaling module that interacts with the cell geometries as well as the
agent-based model to determine cell events and behavior. The model setup is designed to
be user friendly by setting up simulations through a single configuration file that specifies
model behavior and initialization. The simulation output is formatted in transferable easy
to access data formats for broad compatibility and the use of standard tools. The entire
framework is designed to have a fundamentally modular structure for easy model assem-
bly and quick extension. The model is freely available to everyone under an open-source
license.

It enables the use of the framework in a wide range of scientific applications opening up
new areas for computational research by connecting the scales between single-cell data
and tissue data in a single model. This model can be applied in simulations of tumor evo-
lution and heterogeneity simulations, developmental biology, such as tissue patterning.
The large scale of the simulations will enable new simulation of epithelial tissue, such as
wound healing. In the future, the model can complement wet-lab experiments and test-
ing through enabling large-scale simulations comparable to experimental and medical
imaging methods.

With this contribution, we enable a new scale of tissue simulations that connect single-
cell data with tissue scale measurements. We lift the barriers for large-scale simulations to
a point where the upper bound is determined not by the model but by the parametrization
and our imagination. This paves the way to bridge the scales between microbiological
findings and medical images.

Availability and requirements
e DProject name: NAStJA — Cells in Silico
® DProject repository: https://gitlab.com/nastja/nastja
® Project home page: https://nastja.gitlab.io
e QOperating systems: Linux, Mac OS

https://gitlab.com/nastja/nastja
https://nastja.gitlab.io

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 20 of 21

e Programming language: C++
Other requirements: MPI, CMake
® License: Mozilla Public License, version 2.0 (MPL2.0)

e Any restrictions to use by non-academics: none

Abbreviations

2D: Two-dimensional; 3D: Three-dimensional; ACD: Additional cell data; celllD: Cell identifier; CiS: Cells in silico; CPM:
Cellular Potts model; CPU: Compute processing unit; CSV: Comma-separated values; EDR: Enhanced data rate; FDR:
Fourteen data rate; GPU: Graphics processing unit; HPC: High-performance computing; JSON: JavaScript object notation;
MCS: Monte Carlo sweep; MLUP/s: Million lattice updates per second; MMCs/s: Million Monte Carlo step attempts per
second; MoD: Message of death; MPI: Message passing interface; NAStJA: Neoteric autonomous Stencil code for jolly
algorithms; OpenCL: Open computing language; VTI: VTK image; VTK: Visualization toolkit

Acknowledgments

The authors thank Steffen Scholpp and Nicolai Pfisterer for helpful discussions. This work was partly performed on the
supercomputer ForHLR funded by the Ministry of Science, Research and the Arts Baden-Wirttemberg and by the Federal
Ministry of Education and Research. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time through the John von Neumann Institute
for Computing (NIC) on the GCS Supercomputer JUWELS at Julich Supercomputing Centre (JSC).

Authors’ contributions

MB leads the development of NAStJA. MB, JR, and AS designed the method and conceived the project. MB and JR
designed examples and wrote code. MB and JR wrote the manuscript. FH proceeds simulations and create the statistical
analysis plots. AS helped to finalize the manuscript. All authors read and approved the final manuscript.

Funding

MB, JR, and AS recognize support from the Helmholtz Impuls- und Vernetzungsfond. The funding body played no roles
in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. Open Access
funding enabled and organized by Projekt DEAL.

Availability of data and materials
The source-code and examples are available on the gitlab repository.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

!Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany. 2John
von Neumann Institute for Computing, Julich Supercomputer Centre, Forschungszentrum Julich, 52428 Julich, Germany.
3Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany.

Received: 3 July 2020 Accepted: 31 August 2020
Published online: 06 October 2020

References

1. Schrodinger E. What is life? The physical aspect of the living cell. Cambridge University Press; 1944.

2. Green JB, Sharpe J. Positional information and reaction-diffusion: two big ideas in developmental biology combine.
Development. 2015;142(7):1203-11.

3. GranerF, Glazier JA. Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev
Lett. 1992,69(13):2013.

4. Scianna M, Preziosi L. Multiscale developments of the cellular Potts model. Multiscale Model Simul. 2012;10(2):
342-82.

5. Tomeu Hardasmal AJ, Salguero Hidalgo AG. A lock free approach to parallelize the cellular Potts model: Application
to ductal carcinoma in situ. J Integr Bioinforma. 2020;1(ahead-of-print).. http://hdl.handle.net/10498/23293. https://
doi.org/10.1515/jib-2019-0070.

6. Gusatto E, Mombach JC, Cercato FP, Cavalheiro GH. An efficient parallel algorithm to evolve simulations of the
cellular Potts model. Parallel Process Lett. 2005;15(01n02):199-208.

7. Cercato FP, Mombach JC, Cavalheiro GG. High performance simulations of the cellular Potts model. In: 20th
International Symposium on High-Performance Computing in an Advanced Collaborative Environment (HPCS'06).
Piscataway: IEEE; 2006. p. 28. https://doi.org/10.1109/HPCS.2006.28.

8. Chen N, Glazier JA, Alber MS. A parallel implementation of the cellular Potts model for simulation of cell-based
morphogenesis. In: International Conference on Cellular Automata. Berlin: Springer; 2006. p. 58-67. https://doi.org/
10.1007/11861201_10.

www.gauss-centre.eu
http://hdl.handle.net/10498/23293
https://doi.org/10.1515/jib-2019-0070
https://doi.org/10.1515/jib-2019-0070
https://doi.org/10.1109/HPCS.2006.28
https://doi.org/10.1007/11861201_10
https://doi.org/10.1007/11861201_10

Berghoff et al. BMC Bioinformatics (2020) 21:436 Page 21 of 21

9. Chen N, Glazier JA, Izaguirre JA, Alber MS. A parallel implementation of the Cellular Potts Model for simulation of
cell-based morphogenesis. Comput Phys Commun. 2007;176(11-12):670-81.

10. Tapia JJ, D'Souza R. Data-parallel algorithms for large-scale real-time simulation of the cellular Potts model on
graphics processing units. In: 2009 IEEE International Conference on Systems, Man and Cybernetics. Piscataway: IEEE;
2009. p. 1411-8. https://doi.org/10.1109/ICSMC.2009.5346282.

11. Tapia JJ, D'Souza RM. Parallelizing the cellular Potts model on graphics processing units. Comput Phys Commun.
2011,182(4):857-65.

12. YuC, Yang B. Parallelizing the cellular potts model on gpu and multi-core cpu: An opencl cross-platform study. In:
2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE). Piscataway: IEEE;
2014. p. 117-22. https://doi.org/10.1109/JCSSE.2014.6841853.

13. HeK, Jiang Y, Dong S. A hybrid parallel framework for the cellular Potts model simulations. In: 2009 15th
International Conference on Parallel and Distributed Systems. Piscataway: IEEE; 2009. p. 624-31. https://doi.org/10.
1109/ICPADS.2009.131.

14. Berghoff M, Kondov |, Hotzer J. Massively parallel stencil code solver with autonomous adaptive block distribution.
IEEE Trans Parallel Distrib Syst. 2018;29(10):2282-96.

15. Berghoff M, Rosenbauer J, Pfisterer N. The NAStJA Framework: Zenodo; 2020. https://doi.org/10.5281/zenodo.
3740079.

16. Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph
Comput Graph. 1987;21:163-9. ACM.

17. Newman TS, Yi H. A survey of the marching cubes algorithm. Comput Graphics. 2006;30(5):854-79.

18. Matsumoto M, Wada I, Kuramoto A, Ashihara H. Common defects in initialization of pseudorandom number
generators. ACM Trans Model Comput Simul (TOMACS). 2007;17(4):15.

19. Berghoff M, Kondov I. Non-collective scalable global network based on local communications. In: 2018 [EEE/ACM
9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA). Piscataway: IEEE; 2018. p.
25-32. https://doi.org/10.1109/5calA.2018.00007.

20. Durand M, Guesnet E. An efficient cellular Potts model algorithm that forbids cell fragmentation. Comput Phys
Commun. 2016;208:54-63.

21. Steinbuch Centre for Computing. Forschungshochleistungsrechner ForHLR II. Website. https://www.scc kit.edu/
dienste/forhlr2.php. Accessed 14 Sept 2020.

22. Julich Supercomputing Centre. JUWELS: Modular Tier-0/1 supercomputer at the Julich supercomputing centre. J
Large-Scale Res Facil. 2019;5:135. https://doi.org/10.17815/jlsrf-5-171.

23. Rosenbauer J, Berghoff M, Schug A. Emerging tumor development by simulating single-cell events. bioRxiv. 2020.
https://doi.org/10.1101/2020.08.24.264150. https://www.biorxiv.org/content/early/2020/08/24/2020.08.24.264150.
full.pdf.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC

https://doi.org/10.1109/ICSMC.2009.5346282
https://doi.org/10.1109/JCSSE.2014.6841853
https://doi.org/10.1109/ICPADS.2009.131
https://doi.org/10.1109/ICPADS.2009.131
https://doi.org/10.5281/zenodo.3740079
https://doi.org/10.5281/zenodo.3740079
https://doi.org/10.1109/ScalA.2018.00007
https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.1101/2020.08.24.264150
https://www.biorxiv.org/content/early/2020/08/24/2020.08.24.264150.full.pdf
https://www.biorxiv.org/content/early/2020/08/24/2020.08.24.264150.full.pdf

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Implementation
	NAStJA framework
	Parallel cellular Potts model
	Cell types
	Hamiltonian
	Energy calculations
	Surface Calculation
	Volume Calculation
	Adhesion Calculation

	Parallelism
	Checkerboards
	Quality of pseudo-random numbers
	Visitor pattern
	Localize global information

	Cell events
	Sanity action
	Agent-based cell actions
	Signal and nutrient transport
	Diffusion
	Decay

	Division and mutation
	Mutation

	Cell death

	Output
	CellInfo
	Parallel VTK

	Results and discussion
	Statistical analysis
	Performance and scaling
	Node-level
	Scaling

	User interface

	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

