001     884080
005     20220930130250.0
024 7 _ |a 10.1021/acs.jpclett.0c00999
|2 doi
024 7 _ |a 2128/25667
|2 Handle
024 7 _ |a altmetric:85998985
|2 altmetric
024 7 _ |a pmid:32672983
|2 pmid
024 7 _ |a WOS:000562064500081
|2 WOS
037 _ _ |a FZJ-2020-03081
082 _ _ |a 530
100 1 _ |a Capelli, Riccardo
|0 P:(DE-Juel1)174546
|b 0
|e Corresponding author
245 _ _ |a Accuracy of Molecular Simulation-Based Predictions of k off Values: A Metadynamics Study
260 _ _ |a Washington, DC
|c 2020
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605535180_2431
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The koff values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method—infrequent metadynamics, based on the AMBER force field—to compute the koff of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M2. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA–protein complexes.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HPC-aided design of drugs with improved kinetics of binding (jias5d_20181101)
|0 G:(DE-Juel1)jias5d_20181101
|c jias5d_20181101
|f HPC-aided design of drugs with improved kinetics of binding
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lyu, Wenping
|0 P:(DE-Juel1)180596
|b 1
|u fzj
700 1 _ |a Bolnykh, Viacheslav
|0 P:(DE-Juel1)168432
|b 2
700 1 _ |a Meloni, Simone
|0 0000-0002-3925-3799
|b 3
700 1 _ |a Olsen, Jógvan Magnus Haugaard
|0 0000-0001-7487-944X
|b 4
700 1 _ |a Rothlisberger, Ursula
|0 0000-0002-1704-8591
|b 5
700 1 _ |a Parrinello, Michele
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 7
773 _ _ |a 10.1021/acs.jpclett.0c00999
|g Vol. 11, no. 15, p. 6373 - 6381
|0 PERI:(DE-600)2522838-9
|n 15
|p 6373 - 6381
|t The journal of physical chemistry letters
|v 11
|y 2020
|x 1948-7185
856 4 _ |u https://juser.fz-juelich.de/record/884080/files/Invoice.pdf
856 4 _ |u https://juser.fz-juelich.de/record/884080/files/Invoice.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/884080/files/Authors%27%20last%20version.pdf
|y Published on 2020-07-16. Available in OpenAccess from 2021-07-16.
|z StatID:(DE-HGF)0510
856 4 _ |u https://juser.fz-juelich.de/record/884080/files/Authors%27%20last%20version.pdf?subformat=pdfa
|x pdfa
|y Published on 2020-07-16. Available in OpenAccess from 2021-07-16.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:884080
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174546
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168432
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 0000-0002-3925-3799
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 0000-0001-7487-944X
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 5
|6 0000-0002-1704-8591
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-21
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2018
|d 2019-12-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21