Hauptseite > Publikationsdatenbank > Biomolecular Simulation: A Perspective from High Performance Computing > print |
001 | 884081 | ||
005 | 20240625095124.0 | ||
024 | 7 | _ | |a 10.1002/ijch.202000022 |2 doi |
024 | 7 | _ | |a 0021-2148 |2 ISSN |
024 | 7 | _ | |a 1869-5868 |2 ISSN |
024 | 7 | _ | |a WOS:000535054900001 |2 WOS |
037 | _ | _ | |a FZJ-2020-03082 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Bolnykh, Viacheslav |0 P:(DE-Juel1)168432 |b 0 |e Corresponding author |
245 | _ | _ | |a Biomolecular Simulation: A Perspective from High Performance Computing |
260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1601649086_14867 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a High‐Performance Computing is impacting on all biomedical sciences, including molecular biophysics. Here, we describe general parallel computing strategies (multi‐threading and distributed computing) used in all the natural sciences, including molecular biophysics. Next, we describe how these strategies are applied in molecular dynamics simulations and enhanced sampling methods, either based on force fields, on density functional theory or on QM/MM potentials. As test cases, we focus on the widely used CPMD and GROMACS packages, along with a hybrid QM/MM interface coupling the two recently developed by a European team including the Authors. The review closes with a short perspective on the use of HPC‐based biomolecular simulations. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 0 |f POF III |
536 | _ | _ | |a DFG project 291198853 - FOR 2518: Funktionale Dynamik von Ionenkanälen und Transportern - DynIon - |0 G:(GEPRIS)291198853 |c 291198853 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Rothlisberger, Ursula |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 2 |
773 | _ | _ | |a 10.1002/ijch.202000022 |g Vol. 60, no. 7, p. 694 - 704 |0 PERI:(DE-600)2066481-3 |n 7 |p 694 - 704 |t Israel journal of chemistry |v 60 |y 2020 |x 1869-5868 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884081/files/Supporting%20Information.docx |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884081/files/ijch.202000022.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884081/files/Main%20Text.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884081/files/ijch.202000022.pdf?subformat=pdfa |x pdfa |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/884081/files/Main%20Text.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:884081 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)168432 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ISR J CHEM : 2018 |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-02-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-02-26 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|