000884090 001__ 884090
000884090 005__ 20220930130250.0
000884090 0247_ $$2doi$$a10.3389/fmicb.2020.557119
000884090 0247_ $$2Handle$$a2128/25749
000884090 0247_ $$2altmetric$$aaltmetric:89686122
000884090 0247_ $$2pmid$$apmid:33013787
000884090 0247_ $$2WOS$$aWOS:000574337000001
000884090 037__ $$aFZJ-2020-03087
000884090 082__ $$a570
000884090 1001_ $$0P:(DE-HGF)0$$aCasas, Carla C.$$b0
000884090 245__ $$aDolerite Fines Used as a Calcium Source for Microbially Induced Calcite Precipitation Reduce the Environmental Carbon Cost in Sandy Soil
000884090 260__ $$aLausanne$$bFrontiers Media$$c2020
000884090 3367_ $$2DRIVER$$aarticle
000884090 3367_ $$2DataCite$$aOutput Types/Journal article
000884090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601022442_26240
000884090 3367_ $$2BibTeX$$aARTICLE
000884090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884090 3367_ $$00$$2EndNote$$aJournal Article
000884090 520__ $$aMicrobial-Induced Calcite Precipitation (MICP) stimulates soil microbiota to induce a cementation of the soil matrix. Urea, calcium and simple carbon nutrients are supplied to produce carbonates via urea hydrolysis and induce the precipitation of the mineral calcite. Calcium chloride (CaCl2) is typically used as a source for calcium, but basic silicate rocks and other materials have been investigated as alternatives. Weathering of calcium-rich silicate rocks (e.g., basalt and dolerite) releases calcium, magnesium and iron; this process is associated with sequestration of atmospheric CO2 and formation of pedogenic carbonates. We investigated atmospheric carbon fluxes of a MICP treated sandy soil using CaCl2 and dolerite fines applied on the soil surface as sources for calcium. Soil-atmosphere carbon fluxes were monitored over 2 months and determined with an infrared gas analyser connected to a soil chamber. Soil inorganic carbon content and isotopic composition were determined with isotope-ratio mass spectrometry. In addition, soil-atmosphere CO2 fluxes during chemical weathering of dolerite fines were investigated in incubation experiments with gas chromatography. Larger CO2 emissions resulted from the application of dolerite fines (116 g CO2-C m–2) compared to CaCl2 (79 g CO2-C m–2) but larger inorganic carbon precipitation also occurred (172.8 and 76.9 g C m–2, respectively). Normalising to the emitted carbon to precipitated carbon, the environmental carbon cost was reduced with dolerite fines (0.67) compared to the traditional MICP treatment (1.01). The carbon isotopic signature indicated pedogenic carbonates (δ13Cav = −8.2 ± 5.0‰) formed when dolerite was applied and carbon originating from urea (δ13Cav = −46.4 ± 1.0‰) precipitated when CaCl2 was used. Dolerite fines had a large but short-lived (<2 d) carbon sequestration potential, and results indicated peak CO2 emissions during MICP could be balanced optimising the application of dolerite fines.
000884090 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000884090 588__ $$aDataset connected to CrossRef
000884090 7001_ $$0P:(DE-Juel1)129461$$aGraf, Alexander$$b1$$eCorresponding author$$ufzj
000884090 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b2$$ufzj
000884090 7001_ $$0P:(DE-HGF)0$$aSchaschke, Carl J.$$b3
000884090 7001_ $$0P:(DE-HGF)0$$aJorat, M. Ehsan$$b4
000884090 773__ $$0PERI:(DE-600)2587354-4$$a10.3389/fmicb.2020.557119$$gVol. 11, p. 557119$$p557119$$tFrontiers in microbiology$$v11$$x1664-302X$$y2020
000884090 8564_ $$uhttps://juser.fz-juelich.de/record/884090/files/fmicb-11-557119.pdf$$yOpenAccess
000884090 8564_ $$uhttps://juser.fz-juelich.de/record/884090/files/fmicb-11-557119.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884090 8767_ $$92020-08-17$$d2020-09-18$$eAPC$$jDeposit$$lDeposit: Frontiers$$p557119$$z2507,50 USD, Reporting 2020-08
000884090 909CO $$ooai:juser.fz-juelich.de:884090$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129461$$aForschungszentrum Jülich$$b1$$kFZJ
000884090 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b2$$kFZJ
000884090 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000884090 9141_ $$y2020
000884090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000884090 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884090 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT MICROBIOL : 2018$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884090 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-11
000884090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000884090 920__ $$lyes
000884090 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000884090 980__ $$ajournal
000884090 980__ $$aVDB
000884090 980__ $$aUNRESTRICTED
000884090 980__ $$aI:(DE-Juel1)IBG-3-20101118
000884090 980__ $$aAPC
000884090 9801_ $$aAPC
000884090 9801_ $$aFullTexts