001     884090
005     20220930130250.0
024 7 _ |a 10.3389/fmicb.2020.557119
|2 doi
024 7 _ |a 2128/25749
|2 Handle
024 7 _ |a altmetric:89686122
|2 altmetric
024 7 _ |a pmid:33013787
|2 pmid
024 7 _ |a WOS:000574337000001
|2 WOS
037 _ _ |a FZJ-2020-03087
082 _ _ |a 570
100 1 _ |a Casas, Carla C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Dolerite Fines Used as a Calcium Source for Microbially Induced Calcite Precipitation Reduce the Environmental Carbon Cost in Sandy Soil
260 _ _ |a Lausanne
|c 2020
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601022442_26240
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Microbial-Induced Calcite Precipitation (MICP) stimulates soil microbiota to induce a cementation of the soil matrix. Urea, calcium and simple carbon nutrients are supplied to produce carbonates via urea hydrolysis and induce the precipitation of the mineral calcite. Calcium chloride (CaCl2) is typically used as a source for calcium, but basic silicate rocks and other materials have been investigated as alternatives. Weathering of calcium-rich silicate rocks (e.g., basalt and dolerite) releases calcium, magnesium and iron; this process is associated with sequestration of atmospheric CO2 and formation of pedogenic carbonates. We investigated atmospheric carbon fluxes of a MICP treated sandy soil using CaCl2 and dolerite fines applied on the soil surface as sources for calcium. Soil-atmosphere carbon fluxes were monitored over 2 months and determined with an infrared gas analyser connected to a soil chamber. Soil inorganic carbon content and isotopic composition were determined with isotope-ratio mass spectrometry. In addition, soil-atmosphere CO2 fluxes during chemical weathering of dolerite fines were investigated in incubation experiments with gas chromatography. Larger CO2 emissions resulted from the application of dolerite fines (116 g CO2-C m–2) compared to CaCl2 (79 g CO2-C m–2) but larger inorganic carbon precipitation also occurred (172.8 and 76.9 g C m–2, respectively). Normalising to the emitted carbon to precipitated carbon, the environmental carbon cost was reduced with dolerite fines (0.67) compared to the traditional MICP treatment (1.01). The carbon isotopic signature indicated pedogenic carbonates (δ13Cav = −8.2 ± 5.0‰) formed when dolerite was applied and carbon originating from urea (δ13Cav = −46.4 ± 1.0‰) precipitated when CaCl2 was used. Dolerite fines had a large but short-lived (<2 d) carbon sequestration potential, and results indicated peak CO2 emissions during MICP could be balanced optimising the application of dolerite fines.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 2
|u fzj
700 1 _ |a Schaschke, Carl J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Jorat, M. Ehsan
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.3389/fmicb.2020.557119
|g Vol. 11, p. 557119
|0 PERI:(DE-600)2587354-4
|p 557119
|t Frontiers in microbiology
|v 11
|y 2020
|x 1664-302X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884090/files/fmicb-11-557119.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884090/files/fmicb-11-557119.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884090
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142357
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT MICROBIOL : 2018
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-01-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21