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ABSTRACT: High-resolution boundary layer water vapor profile observations are essential for understanding the inter-

play between shallow convection, cloudiness, and climate in the trade wind atmosphere. As current observation techniques

can be limited by low spatial or temporal resolution, the synergistic benefit of combining ground-based microwave radi-

ometer (MWR) and dual-frequency radar is investigated by analyzing the retrieval information content and uncertainty.

Synthetic MWR brightness temperatures, as well as simulated dual-wavelength ratios of two radar frequencies are gen-

erated for a combination of Ka and W band (KaW), as well as differential absorption radar (DAR) G-band frequencies

(167 and 174.8GHz, G2). The synergy analysis is based on an optimal estimation scheme by varying the configuration of the

observation vector. CombiningMWRandKaWonly marginally increases the retrieval information content. The synergy of

MWR with G2 radar is more beneficial due to increasing degrees of freedom (4.5), decreasing retrieval errors, and a more

realistic retrieved profile within the cloud layer. The information and profile below and within the cloud is driven by the

radar observations, whereas the synergistic benefit is largest above the cloud layer, where information content is enhanced

compared to an MWR-only or DAR-only setup. For full synergistic benefits, however, G-band radar sensitivities need to

allow full-cloud profiling; in this case, the results suggest that a combined retrieval ofMWRandG-bandDARcan help close

the observational gap of current techniques.

KEYWORDS: Cumulus clouds; Water vapor; Algorithms; Microwave observations; Radars/Radar observations; Remote

sensing

1. Introduction
Water vapor is the driving constituent of the global hydro-

logical cycle and of cloud and precipitation formation. It

plays a key role in the characterization of the global radiation

budget (Held and Soden 2006; Hartmann et al. 2013). In the

trades, the maximum variability of atmospheric water vapor is

found in the lower part of the troposphere within the boundary

layer where it influences shallow convection, cloudiness, and

circulation processes (Holloway and Neelin 2009; Sherwood

et al. 2010). Thus, precise observations of the low-tropospheric

moisture structure in trade wind–driven regions are partic-

ularly important to better understand the mechanisms

controlling shallow convection, the intensity of cloud feed-

backs and, hence, climate sensitivity (Pincus et al. 2018; Nehrir

et al. 2017).

Currently, profiles of the atmosphere are available through

the operational radiosonde network with ascents typically ev-

ery 6, 12, or 24 h. However, these observations are not only

sparse in temporal and spatial resolution, but also expensive in

operation (e.g., Nehrir et al. 2017). Spaceborne sensors provide

broad global coverage, but lack the horizontal and vertical

resolution needed for quantifying processes in the boundary

layer (Ebell et al. 2013; Stevens et al. 2017; Schröder et al.

2019). Ground-based microwave remote sensing instruments

are a promising alternative to these methods (Westwater et al.

2004), as the atmosphere is semitransparent in the microwave

spectral region. Passive microwave radiometers (MWRs) and

radars can, thus, penetrate clouds andmeasure in clear, cloudy,

and, in case of the radar, precipitating conditions. MWRs, such

as the Humidity And Temperature Profiler (HATPRO; Rose

et al. 2005), accurately provide integrated quantities such as

integrated water vapor (IWV) and liquid water path (LWP),

and, using the different weighting functions of the channels,

can be used for deriving temperature and humidity profiles

(Crewell and Löhnert 2007). However, the profiles’ vertical

resolution, which reaches about 1 km at 500m height, further

degrades with height and is too low to accurately quantify

the before-mentioned processes. On the other hand, active

instrument measurements, such as by the lidar or radar, are

characterized by high vertical resolutions, but need back-

scattering targets like aerosols or cloud droplets to gain

information about the profile of the atmosphere. In case of

the lidar, a profile can only be derived below cloud base, as

the signal is saturated within the cloud layer.

Compensating for disadvantages of each individual instru-

ment, synergistic retrieval approaches that combine passive and

active remote sensing instruments increase the information

content about the state of the atmosphere (e.g., Stankov 1998;
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Löhnert et al. 2001; Wagner et al. 2019). Synergistic ground-

based water vapor retrievals have thus far been developed

using the combination of various remote sensing instruments:

e.g., MWR and lidar (Barrera-Verdejo et al. 2016; Foth and

Pospichal 2017), infrared hyperspectrometer andMWR (Turner

and Löhnert 2014), or MWR, ceilometer, and Ka-band radar

(Löhnert et al. 2004). Optimal estimation-based retrieval algo-

rithms provide the necessary framework for data evaluation

(Rodgers 2000).

The potential of dual-frequency radar for water vapor pro-

filing has been previously explored using the difference in

water vapor continuum absorption (Ellis and Vivekanandan

2011; Tian et al. 2007), and frequencies in the 183.31GHz band

(Battaglia and Kollias 2019; Battaglia et al. 2014). Analog to

the differential absorption lidar (DIAL) technique, differential

absorption radar (DAR) uses one radar frequency close to the

absorption line’s center (online), and a second frequency on

the complex’s wing (offline). Evaluating the dual-wavelength

ratio (DWR), i.e., the difference between the logarithmic

equivalent reflectivity factors, gives information about the

partial integrated water vapor amounts along the ray path.

Due to the difference of water vapor attenuation in the two

frequencies, the partial water vapor amount can be derived

between radar and the backscattering volumes (Lebsock et al.

2015; Millán et al. 2016). Only recently, Roy et al. (2020)

presented the Vapor In-Cloud Profiling Radar (VIPR),

the first ground-based DAR system operating at 167 and

174.8GHz along the wing of the 183.31GHz absorption line.

With the VIPR system, the water vapor profile throughout the

cloud layer can be retrieved with an uncertainty of smaller

than 1 gm23.

In this paper, we assess the synergistic benefits of a combined

retrieval of dual-frequency radar and MWR for a typical trade

wind–driven cloud scene. We analyze a combination of syn-

thetic ground-based MWR K-band brightness temperatures

(TBs) with simulated differential radar signals for two fre-

quency pairs: the Ka- and W-band frequencies at 35.5 and

94GHz, later referred to as KaW, which are available at, e.g.,

the Barbados Cloud Observatory (BCO; Stevens et al. 2016);

and a hypothetical G-band frequency combination motivated

by the novel VIPR instrument with frequencies at 167 and

174.8GHz, in the following referred to as G2. The resulting

DWR of these two frequency pairs is mainly affected by

different absorption features due to their location in the mi-

crowave spectrum. In case of KaW, the DWR signal is driven

by differential continuum absorption, including contributions

due to water vapor as well as liquid water; in case of G2, the

signal is mainly affected by the difference in absorption

strength on the absorption line wing at 183.31GHz.

As observations of both frequency pairs are not available

for simultaneous cases, we use synthetic observations gener-

ated by the Passive and Active Microwave Transfer model

(PAMTRA; Mech et al. 2020). Specifically, we simulate radar

reflectivities at Ka, W, and G2 frequencies, as well as of the

MWR TBs in the seven HATPRO K-band channels distrib-

uted between 22.24 and 31.4GHz. Then, we apply an optimal

estimation algorithm to these observations to retrieve the

column water vapor profile as well as the LWP. To assess the

synergistic benefits of this novel approach, we vary the con-

stellation of the observation vector using MWR-only TBs;

radar-only DWRs; and the combination of both. DWR is

analyzed for both KaW and G2 frequency pairs. In all

configurations, a 2m humidity observation is used to constrain

the retrieval. The synergistic benefit is evaluated based on the

total degrees of freedom of signal (DFS; Rodgers 2000) and

the resulting retrieval error, and compared to the results of

the MWR-only and radar-only retrieval.

The paper is organized as follows: The instruments, the

simulation method, and the retrieval concept are introduced

in section 2. The synthetic observations, their sensitivity to

varying water vapor and liquid water conditions, as well as

limitations due to radar detection thresholds are presented in

section 3. Based on a typical case study example, we analyze

the synergistic retrieval potential in section 4. Expanding the

results of the case study to a larger number of scenes, section 5

quantifies the synergistic benefits compared to the MWR-only

and radar-only retrievals, underlining differences between the

two radar frequency pairs. Furthermore, sensitivities to assumed

observation and forward model uncertainties are analyzed, and

the impacts of radar sensitivity thresholds on the retrieval are

discussed. Section 6 summarizes the findings, and gives an out-

look on future application potential of this novel approach.

2. Synergy concept and algorithm methodology

a. Instruments and observation simulations
Exposed to the North Atlantic trade winds, BCO is located

at the eastern point of the Barbados island (Stevens et al. 2016).

Observing trade wind clouds since 2010, the observatory is

equipped with a suite of state-of-the art remote sensing in-

struments, including a W-band radar recently complementing

the suite.

The microwave radiometer HATPRO measures incoming

radiation in 14 channels distributed throughout the lower mi-

crowave spectrum. In this work, we use the brightness tem-

perature of the 7 water vapor sensitive K-band channels. Six of

these channels are located in the center and on the wing of the

water vapor absorption line at 22.24GHz. IWV and LWP can

be retrieved when including the measurements of a window

channel located at 31.4GHz. As the opacity of the atmosphere

increases toward the absorption line center, the K-band

HATPRO TBs can also be used for humidity profiling, such

as described in, e.g., Löhnert et al. (2009). Water vapor profiles

can be retrieved with an uncertainty of about 1 gm23, a tem-

poral resolution of 2–4 s, and a vertical resolution of 1–2 km,

degrading with height. Two to three independent pieces of

information can be derived. Due to the limited vertical reso-

lution of the retrieved profile, retrievals based on only MWR

observations are not able to resolve strong humidity gradi-

ents typical for the trade wind–driven atmosphere observed,

e.g., at BCO.

Cloud radars can profile the atmosphere reaching increased

vertical resolutions. One of the measured quantities, the

equivalent radar reflectivity factor Ze (further referred to as

reflectivity), depends on the scatterer’s diameter to the power

of six when Rayleigh scattering only is assumed. The observed
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Ze is further affected by two-way attenuation due to gas and

hydrometeor extinction along the beam path. Microwave at-

tenuation is frequency dependent: liquid water and water va-

por attenuation generally increase with frequency (continuum

absorption), and attenuation due to water vapor is particularly

enhanced within the water vapor absorption lines around

22.24 and 183.31GHz. Further attenuation can occur due to

other atmospheric gases like oxygen and nitrogen, which, in the

G band, is smaller than the attenuation due to water vapor.

Attenuation is also influenced by the broadening of the ab-

sorption lines due to temperature and pressure changes.

The DAR technique, in analogy to the DIAL technique,

makes use of the frequency dependent difference in radar

attenuation described by the dual-wavelength ratio (DWR

[dB] 5 Ze1 [dBz] 2 Ze2 [dBz]) when locating one frequency

near the absorption line center (online) and one on the ab-

sorption line wing (offline). According to Lebsock et al. (2015)

andMillán et al. (2016), the differential signal can be related to

the amount of water vapor located between the radar and the

target when neglectingmultiple scattering; assuming that water

vapor absorption is order of magnitudes stronger than ab-

sorption due to other gases; and when neglecting the temper-

ature and pressure dependency. However, this relation is only

valid if non-Rayleigh scattering either does not impact the

reflectivity signal, or if it impacts Ze of both frequencies the

sameway. The former we can assume for the pure liquid clouds

observed at BCO in case of the MWR and KaW signals; the

latter we assume for the frequencies used in the G band.

Whereas typical Ka-band radars are pulsed radar sys-

tems, W-band radar systems typically are nonpulsed fre-

quency modulated continuous wave (FMCW) radars (see,

e.g., Küchler et al. 2017). Due to the FMCW principle, the

vertical resolution, sensitivity, and Nyquist velocity are height

dependent and can be adjusted through the chirp table settings.

At BCO, these settings are chosen such that the range bins of

the two radar systems match with a vertical resolution of

30 m throughout the boundary layer. With this range reso-

lution, the pulsed Ka-band radar system reaches a sensitivity

threshold of 269 dBz at 1 km height (Görsdorf et al. 2015).
Typical W-band settings at BCO lead to a detection threshold

of 251 dBz at 1000m, operating with an integration time

of 0.9 s.

Roy et al. (2020) present the first operational G-band DAR

system and a least squares inversion method to derive the

water vapor profile throughout the cloud layer. With a system

output power of 0.2W, a range resolution of 15m and a

nominal chirp duration time of 1ms, VIPR reaches a single-

pulse reflectivity detection threshold of 240 dBz at 1000m.

Decreasing the vertical range resolution to 150m would lead

to a sensitivity improvement of 10 dB to 250 dBz (R. Roy

2020, personal communication). Noncoherent signal pro-

cessing would similarly improve the detection sensitivity

while decreasing the temporal resolution.

Using the profiling capabilities of the dual-frequency radar,

as well as the advantages of the MWR, a synergy concept such

as illustrated in Fig. 1 promises increasing information content

compared to an MWR-only or radar-only retrieval setup. In

the instrument synergy, the MWR provides information about

the full-column water vapor path, the LWP, and a coarse water

vapor profile throughout the whole atmospheric column. The

dual-frequency radar observations provide information about

the partial water vapor amounts between each backscattering

volume. Thus, the amount of partial water vapor located be-

tween ground and cloud base can be derived, as well as a finely

resolved water vapor profile within the cloud layer. In this

retrieval approach, we assume that cloud-base and cloud-top

height observations and 2m humidity observations (r2m) are

available, for example, through Cloudnet observations, and

use this extra information to constrain the retrieval.

We present a feasibility study based on simulated observa-

tions to test the retrieval concept under ideal conditions, as

simultaneous observations of all considered instruments are

not available. By simulating the instruments’ observations,

unknown instrument uncertainties or biases of real observa-

tional data are eliminated, and a fair comparison between all

different retrieval setups and both frequency pairs is possible.

The radiative transfer model PAMTRA is used to simulate

MWRTBs and radar reflectivity factor Ze. To model a typical

single-layered liquid trade wind cumulus cloud scenario, we

use quality-controlled pressure, temperature, and relative

humidity profiles of the 0000 and 1200 UTC radiosondes

launched at Grantley Adams International Airport (http://

weather.uwyo.edu/upperair/sounding.html), approximately

15 km southwest of BCO. We only consider soundings that

reached 20 km altitude, and have complete pressure, tem-

perature, and humidity profiles. The lowest available hu-

midity measurement of each radiosonde profile is assumed

as 2 m humidity observation.

Specifically, we assign a LWP of 50 gm22 to the cloud layer

as motivated from previous studies analyzing the distribution

of LWP in trade wind–driven conditions around Barbados

(see, e.g., Jacob et al. 2019; Schnitt et al. 2017). Due to the high

subadiabaticity of these clouds (e.g., Abel and Shipway 2007),

FIG. 1. Concept, instruments, and their observations used in the

synergistic retrieval approach: MWR brightness temperature TB

for IWV, LWP, and coarse water vapor profile; DWR for partial

IWV quantification below cloud base and in-cloud profiling; cloud-

base and cloud-top heights provided by, e.g., Cloudnet (Illingworth

et al. 2007); and 2m humidity observations (r2m). Blue lines rep-

resent the vertical range of the instruments’ observations.
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we distribute the LWP such that the liquid water content

(LWC) is constant with 0.05 gm23 throughout the cloud layer.

Simulating typical cloud conditions observed at BCO (e.g.,

Nuijens et al. 2014), cloud-base and cloud-top height are as-

sumed to be 1000 and 2000m, respectively. We assume a

cloud droplet effective radius (reff) of 10mm, and a lognormal

droplet size distribution (DSD) with a shape parameter s

of 0.3 (Miles et al. 2000). Using this simplified approach, we

neglect potential challenges due to non-Rayleigh scattering

of drizzle or ice particles affecting the radar observations. The

sensitivity of our results to the assumed cloud parameters is

analyzed in section 5b.

To model expected measurement uncertainties, we add a

random Gaussian noise to each simulated measurement. We

assume a TB accuracy of 0.4K for all seven K-band channels

taking into account uncertainties due to radiometric noise and

calibration (Maschwitz et al. 2013). For the radar reflectivities,

we assume an uncertainty of 0.4 dB for all frequencies and

heights, based on the errors given by the Cloudnet algorithm

(Illingworth et al. 2007) in comparable situations. All con-

sidered measurements and their assumed characteristics are

summarized in Table 1.

b. Optimal estimation methodology
Finding a solution to linking an atmospheric state x to a

remote sensing measurement y by x 5 F21(y) is typically an

ill-posed problem. Hence, multiple atmospheric states x can

lead to the same observation y. Bayes’s theorem manifests a

general way of finding the most probable solution considering

y and a given prior state. The optimal estimation equations

derived by Rodgers (2000) fulfill this theorem, assuming a

moderately nonlinear forward function F(x), and given that the

uncertainties of x and y follow a Gaussian distribution. The

prior state xa and its covariance matrix Sa constrain the solu-

tion in state space while the solution is physically consistent:

applying the forward function to the retrieved state x leads to

the original observation y within the corresponding measure-

ment uncertainties given by the error covariance matrix Se and

the prior covariance matrix Sa.

The optimal solution xop is found when iterating Eq. (1)

until a minimum of the cost function is found and convergence

is reached:

x
i11

5x
a
1 fS

a
KT

i � (K
i
S
a
KT

i 1S
e
)
21 � [y2F(x

i
)

1K
i
� (x

i
2 x

a
)]g . (1)

The JacobianmatrixKi gives the sensitivity of each observation

to each changing state, and is calculated per retrieval iteration:

S
i
5S

a
2S

a
KT

i � (S
e
1K

i
S

a
KT

i )
21 � K

i
S

a
. (2)

The diagonal elements of the a posteriori retrieval error

matrix Sop give the uncertainty of each retrieved state, and

depend on the prior covariances Sa, the Jacobian matrix Ki,

and the error covariances Se. Here, Se includes uncertainties

from observations, as well as the forward model parameters.

Retrieval convergence requires the residuum of yi11 2 yi to

be an order of magnitude smaller than the estimated error

given by the a posteriori covariance matrix Sop of the derived

state xop [Eq. (2)]. Whether the converged solution xop is

physically consistent can be tested with a x2 test (e.g., Rodgers

2000; Ebell et al. 2017). A true test verifies, here with a sig-

nificance level of 95%, that the null hypothesis cannot be

rejected. In other words, true convergence is reached if the

distribution of the difference dy between forward-modeled

retrieval results F(xop) and original observations yobs is a

member of a Gaussian distribution with zero mean and co-

variance of Sdy 5Se � (KSaK
T 1Se)

21 � Se.

The averaging kernel matrix A describes the sensitivity

of the retrieved state xop to the original state following

Ai 5Si(K
T
i S

21
e Ki). The diagonal elements of A provide the

DFS, that is the independent pieces of information, per retrieved

state element; the trace of A gives the total DFS, describing the

total information content available in the retrieval.

In the presented retrieval approach, the state vector x con-

sists of absolute humidity on 45 height levels with decreasing

vertical resolution, and the LWP. We retrieve the natural

logarithm of the absolute humidity in order to maintain a

quasi-Gaussian distribution of the retrieval states x, such as

proposed byMaahn et al. (2020). The retrieved LWP is used to

calculate the liquid attenuation of the radar signal in each re-

trieval iteration. In this paper, the observation vector y com-

prises the seven HATPRO K-band brightness temperatures,

complemented by the 2m humidity observation, as well as the

DWR calculated in each layer within the cloud boundaries. For

the cloud scene simulated in this study, seven DWR observa-

tions were included with a vertical spacing of 150–200m.

Linking the observations ywith the state vector x, the radiative

transfer model PAMTRA (Mech et al. 2020) is used as forward

function F(x).

To find a consistent solution, the prior profile xa should rep-

resent the natural atmospheric conditions around Barbados.

TABLE 1. Characteristics of observations. The observations forming the OE observation vector are highlighted in boldface print with

their corresponding units in parentheses. Radar sensitivity thresholds are given at 1 km height for a 30m (Ka,W) and 150m (G2) vertical

resolution, and an integration time of 0.9 s (W) and 1ms (G2), respectively.

MWR HATPRO

Dual-frequency radar

2m humidityKa W G2

Channels (GHz) 22.24, 23.44, 23.84, 25.44, 26.24, 27.84, 31.4 35.5 94.0 167.0 174.8

Measurement Brightness temperature TB (K) Equivalent reflectivity factor Ze (dBz);

Dual-wavelength ratio DWR (dB)

r2m (g m23)

Uncertainty 0.4 K DZe 5 0.4 dB; DDWR 5 0.56 dB 10%

Sensitivity 1 km 269 dBz 251 dBz 250 dBz
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Therefore, we built an absolute humidity profile prior cli-

matology from all operationally available radiosonde as-

cents launched at 0000 or 1200 UTC at Grantley Adams

International Airport located 30 km southwest of BCO from

2002 until 2017. We control the sounding quality by ex-

cluding sondes with incomplete temperature, pressure, or

relative humidity measurements, as well as those not reaching

20km height, and, hence, consider 4620 sondes. The prior state

and covariance are derived for the dry and the wet season, re-

spectively, as described in Stevens et al. (2017). For the dry

season fromDecember throughMay, 1862 sondes are available,

and 2758 sondes for the wet season stretching from June through

November. As in the approach presented by Turner and

Löhnert (2014), the prior LWP is assumed to be 0 gm22 with a

variance of 50 gm22, excluding correlations with the water va-

por states. Here, the prior state is also used as first guess.

We assume that the measurement errors are uncorrelated,

and use a TB uncertainty of DTB 5 0.4K in each of the mi-

crowave channels, and a Ze uncertainty of DZe 5 0.4 dB for all

radar frequencies (see section 2a). According to error propa-

gation, the uncorrelated Ze errors lead to a DWR uncertainty

of 0.56 dB. The 2 m humidity measurement r2m is assumed to

be affected by a 10% relative error. For simplicity reasons,

we neglect possible errors due to forward model assump-

tions like the DSD parameters, the effective radius or the

LWC profile shape, but give estimates of the sensitivity of

our results to these parameters, as well as the assumed

measurement uncertainties (Se) and prior covariances (Sa)

in section 5b.

In the following analyses, we will use three criteria to esti-

mate the quality of the retrieved profile xop, and to quantify the

synergistic benefit: theDFS; the a posteriori error of each state,

given by the diagonal entries of the Sop matrix; and the

comparison of the retrieved profile to the original radio-

sonde absolute humidity profile used to generate the syn-

thetic observations.

3. Synthetic observations
Synthetic observations of MWR K-band TBs and radar

reflectivities Ze for Ka, W, and G2 were generated by forward

simulating 633 quality-controlled radiosonde profiles from

2018, using the method described in section 2a.

All simulated radar reflectivities as well as the resulting

DWRs are presented as function of height above cloud base in

Fig. 2. Shown are the attenuated reflectivities, that is the two-

way attenuation of the signal due to liquid and water vapor

attenuation along the path subtracted from the unattenuated

simulated reflectivity. The DWR were calculated for the KaW

and G2 combination by subtracting the respective reflectivities

from another. A random measurement error was added to the

simulated Ze as described in section 2a.

The reflectivity in each frequency decreases with height due

to cumulating water vapor and liquid attenuation along the ray

path. The attenuation strength depends on the frequency,

and is strongest nearest the water vapor absorption line at

183.31GHz. Thus, between 1000 and 2000m, Ka- and W-band

reflectivities only decrease by less than 1 dB due to continuum

absorption, whereas the G-band reflectivities, located on the

wing of the absorption line, decrease on average by 4.8 and

9.3 dB in 167 and 174.8GHz, respectively. Lower water vapor

amounts below 2000m, thus weaker water vapor attenuation,

lead to higher reflectivities per range bin, an effect that is

particularly pronounced in the water vapor sensitive G-band

frequencies.

Not only does the attenuation strength change depending

on the frequency, but so does the differential attenuation be-

tween KaW and the G2 frequencies. As attenuation increases

strongly along the wing of the 183.31GHz water vapor line, the

resulting attenuation gradient is higher compared to the re-

spective gradient of the continuum absorption between Ka and

W. Therefore, the DWR G2 signal is higher than the KaW

signal, and also increases stronger with height, as attenua-

tion cumulates along the ray path. Between 1000 and 2000m,

FIG. 2. Simulated (a) radar reflectivity Ze at 35.5GHz (dots), 94GHz (3), 167.0GHz (triangles), and 174.8GHz

(squares) and (b) resulting DWR for KaW (dots, olive) and G2 (squares, black) frequency combination. Ze and

DWR are plotted as function of height above an assumed cloud base of 1000m, and color coded by water vapor

amount below 2000m. The mean Ze and DWR are shown (solid line), as well as the respective radar sensitivity

thresholds given in Table 1 (dashed). Simulations were based on 633 radiosonde profiles from 2018 with cloud-base

and cloud-top heights assumed at 1000 and 2000m, respectively. A cloud LWP of 50 gm22 with constant LWC of

0.05 gm23 was assumed.
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the DWR increases on average by 1.0 dB (KaW) and 6.6 dB

(G2). Lower water vapor amounts reduce the vertical dynamical

range of the DWR signal.

The influences of water vapor and liquid water to the DWR

signals are illustrated in Fig. 3a. Shown for the synthetic cloud

scenario used in this study, the KaW and G2 DWRs depend

linearly on the water vapor path between radar and targets. For

both frequency combinations, the Pearson correlation coeffi-

cient is nearly one. An increase of partial IWV of 1 kgm22

leads to an increase of DWR at cloud top of 0.1 dB (0.6 dB)

for KaW (G2), as denoted by the slope m of a linear fit

function. Figure 3b shows that the DWR KaW at cloud top

increases with cloud LWP, leading to a gain of signal of 6.1 dB

(1 kgm22)21 added liquid, whereas the G2 DWR only in-

creases by 0.7 dB (kgm22)21. The MWR TBs vary as ex-

pected: whereas the TB in the 22.24GHz channel increases

most with increasing IWV [1.58 K (kgm22)21], the TB in the

window channel at 31.4 GHz is most sensitive to changes in

LWP [33.3 K (kgm22)21].

The sensitivities of KaW and G2 DWR, as well as the MWR

TBs, give an initial impression about the synergy potential of

these observations for the retrieval. Whereas the DWR G2

signal shows an enhanced sensitivity to varying partial IWV

along the beam path, the differential liquid attenuation con-

tribution to DWRG2 is small. In case of DWRKaW, however,

differential liquid attenuation contributions are of similar

magnitudes than the signal sensitivity due to changing water

vapor conditions. The MWR TBs are sensitive to both water

vapor and liquid water.

Even though these results suggest that the G2 synergy would

be particularly beneficial for water vapor profiling retrievals,

sensitivity thresholds of current G-band technology might

prohibit the penetration of the entire cloud layer. With the

current potential of the VIPR system, a single-pulse sensitivity

threshold of 240 dBz is reached at 1 km with a 15m range

resolution and 1ms integration time. Given these technical

constraints, the assumed cloud top at 2000m (see Fig. 2) would

not be detected at 167 or 174.8GHz, and cloud base would be

undetectable with the 174.8 GHz channel for all simulated

cases. Decreasing the vertical resolution to 150m or applying

noncoherent signal processing could improve the sensitivity

to 250 dBz at 1 km (see Table 1), which would lead to a de-

tection of 33.3% of the simulated cloud bases at 174.8GHz.

Assuming a detection threshold of 260 dBz for future radar

systems with increased transmitter power would allow detec-

tion of all simulated cloud bases. In 60.0% of all simulated

cases, the modeled cloud would be profiled up to 1500m.

Therefore, in the following synergy analysis, the retrieval

grid spacing was selected such that the retrieval resolution

varies between 150 and 200m in the cloud layer. As G-band

technology is only at the early stage of development and

sensitivities might change in future systems, no sensitivity

threshold was applied to the synthetic radar observations in

the synergy analyses, and full cloud profiling potential was

assumed. The impact of different sensitivity thresholds and,

thus, different cloud penetration depths, on the retrieval is

analyzed in section 5b by reducing the number of DWRs in

the observation vector.

4. Case study
The selected case study is based on a radiosonde launched at

BCO at 1406 UTC (1006 local time)19 February 2019. On that

day, the atmosphere showed typical features for a trade wind–

driven scene: a strong temperature inversion layer located

between 2350 and 2600m with a temperature increase of 4K; a

strong absolute humidity gradient of 8.5–0.2 gm23, corre-

sponding to 97% and 0% relative humidity change within the

inversion layer; the lifting condensation level (LCL) located at

660m; and a shallow cloud layer located below the inversion

layer with cloud base around 1000m and cloud top around

2300m. The sonde measured a column IWV of 32.6 kgm22.

Using the simulation setup described in section 2 with cloud-top

FIG. 3. DWR in radar range gate right below cloud top for KaW (blue) and G2 (red) frequency combination, and

simulated MWR K-band TBs (frequency color coded) as function of (a) partial IWV below cloud top (2000m),

(c) total IWV, and (b),(d) LWP. Depicted DWRs and TBs are (a),(c) the same synthetic observations shown in

Fig. 2 for a LWP of 50 gm22, and (b),(d) for one radiosonde profile with partial IWVbelow cloud top of 27.6 kgm22

(total IWV of 32.6 kgm22) and varying LWP. In all simulations, cloud-base and cloud-top heights were located at

1000 and 2000m, respectively, and LWC was constant with 0.05 gm23. The DWR increase per water vapor and

liquid amount is given by the slope of the respective linear fit function.
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height located at 2300m, the simulated MWR TBs decrease

from 59.2K (22.24GHz) to 30.2K (31.4GHz). At cloud base,

Ze reaches 230.5 dBz (232.7 dBz) for the Ka (W) frequency,

and 240.6 dBz (251.5 dBz) at 167GHz (174.8GHz), respec-

tively. The observed 2m humidity (r2m) was 18.9 gm
23.

Figures 4a and 4b show the radiosonde absolute humidity

profile, as well as the retrieval results using MWR-only,

the synergistic MWR 1 radar approach, and radar-only for

both frequency combinations. All setups converge and pass

the x2 test.

The retrieved profile using the MWR-only setup agrees well

with the original radiosounding below the inversion layer.

Within and above the inversion layer, the retrieval does not

resolve the strong humidity gradient, but smooths the profile.

The difference between retrieved and radiosonde absolute

humidity at cloud top is 5.1 gm23 in case of the MWR-only

retrieval setup, with the retrieval underestimating the radio-

sondewater vapor amount below cloud top.Above the inversion

layer, the retrieval overestimates the radiosonde measurements

by about the same amount. The retrieved IWV of 31.7 kgm22

matches the radiosonde IWV by a difference of 1 kgm22 within

the associated uncertainty range. This case nicely illustrates

the restrictions of profiling retrievals based on pure MWR ob-

servations: whereas the IWV amount of the retrieved profile

matches the observed state of the atmosphere, the retrieved

profile does not represent the vertical distribution ofwater vapor

correctly particularly around the inversion layer.

When combining the MWR and radar observations using

the synergistic KaW setup (see Fig. 4a), we expect the dis-

crepancy between radiosonde and retrieval profile to decrease

within the cloud layer due to the information added by the

radar. At cloud base, the difference between radiosonde and

retrieved profile reduces to 1.2 gm23. The profiles of both

setups agree with the radiosonde profile within the range of

uncertainty. Throughout the cloud layer, the addition of KaW

does not lead to an improved agreement between retrieved and

radiosonde profile. When adding the DARG2 observations to

the retrieval as shown in Fig. 4b, however, the retrieved profile

agrees with the radiosonde profile within the retrieval uncer-

tainties, particularly within the lower part of the cloud. In the

upper part of the cloud, the humidity gradient is not fully

captured, but better represented than in the MWR-only setup.

The G2-only retrieval performs well within the cloud layer, but

cannot capture the profile above the cloud.

As shown in Fig. 4c, the a posteriori error of the retrieved

MWR-only profile increases from 1.0 and 1.2 to 1.9 gm23 from

ground level to cloud base and top, respectively. Adding KaW

observations to the retrieval decreases the error at cloud top

FIG. 4. Case study results for (a),(b) retrieved absolute humidity profile and (c),(d) a posteriori retrieval error.

Different retrieval setups were used: MWR-only (blue), radar-only (green), and MWR 1 radar (red) for (a),(c)

KaW radar frequencies and (b),(d) G2 radar frequencies. Case study radiosonde profile (black dashed) and prior

profile and error (orange) are shown for comparison. Cloud-base and cloud-top heights are located at 1000 and

2300m (black dotted lines), respectively.
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slightly, by 0.1 gm23. As shown in Fig. 4d, the error of the

synergistic MWR 1 G2 retrieval is similar to the error of the

DAR G2-only approach below cloud base, reducing the error

to 0.7 gm23 at 400m. Toward cloud top, the error of the DAR

G2-only setup increases, while the synergistic error further

decreases compared to the MWR-only retrieval setup. The

synergistic benefit of combining MWR and DAR G2 is pro-

nounced particularly in these layers with an improvement of

error compared to the MWR-only setup of up to 1.0 gm23

at 3000m.

The information gain through the instrument synergy, and

the vertical distribution of the available information can be

analyzed through the DFS summarized in Table 2. The MWR-

only setup reaches 3.06 DFS in total. When adding KaW to

MWR, the total DFS do not increase considerably, but the

addition of DARG2 to the MWR increases the available DFS

to 4.28. In both synergistic combinations as well as the MWR-

only setup, one piece of information is used for LWP. The

KaW-only configuration contains reduced information about

the LWP, whereas the G2-only does not give any information

about the LWP.

Table 2 and Fig. 5 illustrate the vertical partitioning of the

information content in respect to the cloud layer, plotted rel-

ative to the MWR-only setup. Below the cloud layer, the

synergistic retrieval information in both setups originates

from the radar observations, with the DAR G2 combination

providing a higher information content compared to the KaW

frequencies (0.89 vs 0.57 DFS, respectively). In the cloud layer,

the synergy of MWR1G2 increases the available information

by 0.77 DFS compared to the MWR-only setup, but shows a

slightly reduced information content compared to the G2-only

approach. The synergistic benefit of the joint MWR 1 G2

retrieval is pronounced above cloud, where the information

content is further enhanced compared to the MWR-only

approach. Increasing information content correlates with a

reduced retrieval error for the respective states (cf. Figs. 4c,d). In

case the G-band radar system’s reflectivity sensitivity threshold

were 250dBz at 1000m, cloud base at 1000m would not be

detected, and the synergistic approach would not enhance the

information content compared to the MWR-only approach. If a

sensitivity threshold of 260dBz at 1000m were assumed, how-

ever, cloud base would be detectable, but not the full cloud

would be profiled. The synergistic observation vector, thus,

would comprise TBs, r2m, and the DWRmeasurements at three

height levels from cloud base up to 1450m. Using this reduced

setup, the total synergistic information content would be en-

hanced compared to the MWR-only approach, but the syner-

gistic benefit for the water vapor states above the cloud layer

would be reduced compared to the full-cloud profiling applica-

tion (see Table 2). Full-cloud profiling in this particular scene

would require a sensitivity threshold in the G2 frequencies of

better than 270 dBz at 1000m, given the assumptions made in

the forward modeling (see section 2a).

In case of the MWR1KaW synergy, only little information

is provided by the radar observations, as can be explained by

the stronger differential liquid attenuation component in the

DWRKaW signal, and the resulting lower signal-to-noise ratio

(SNR) with respect to changing water vapor conditions. This

dependency, however, is beneficial when looking at the LWP

DFS: in case of KaW-only, 0.88 of the total 1.52 DFS are at-

tributed to LWP, whereas DAR G2 contains no information

about the LWP.

5. Retrieval statistics and sensitivity

a. Statistics under varying water vapor conditions
Expanding the case study analysis to a statistics of varying

water vapor conditions, we evaluate all observations presented

in section 3 based on 633 atmospheric profiles and forward

simulated with themethod described in section 2a. The vertical

TABLE 2. Case study DFS for different retrieval setups: syner-

gistic approach withMWR and dual-frequency radar observations,

MWR-only configuration, and dual-frequency-radar-only. Dual-

frequency radar observations were evaluated for KaW and G2

frequency pairs. The synergistic and DAR-G2 only retrieval were

also run with a reduced observation vector setup only taking into

account DWR measurements if both simulated radar reflectivities

were above a sensitivity limit of 260 dBz at 1000m. Given are the

total DFS, the DFS for the LWP state, the sum of DFS for all water

vapor (WV) states, and the partial water vapor DFS for below,

within, and above the cloud layer.

DFS

Synergistic

MWR and

MWR

Dual-

frequency radar

KaW G2 G2260 KaW G2 G2260

Total 3.20 4.28 3.67 3.06 1.52 2.34 1.21

LWP 0.99 1.00 0.99 0.99 0.88 0.01 0.01

WV 2.21 3.28 2.67 2.07 0.64 2.33 1.21

WVbelow 0.57 0.89 0.87 0.52 0.57 0.89 0.90

WVin 0.44 1.17 0.83 0.40 0.07 1.44 0.31

WVabove 1.18 1.23 0.97 1.15 0.0 0.0 0.0

FIG. 5. Relative DFS to MWR-only retrieval of the case study

retrieved profiles (a) per retrieved state and (b) vertically cumu-

lated. Shown are the synergistic retrieval setups (red) and the

radar-only setups (green) for both frequency pairs KaW (solid) and

G2 (dashed). Note that the cumulative DFS in (b) include the DFS

for r2m, and the DFS up to 4 km height.
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absolute humidity profiles together with the LWP are retrieved

from the synthetic observations with varying observation vec-

tor configuration: MWR-only, radar-only, and the synergistic

setup. Even though the assumption of a cloud between 1000

and 2000m might not be represented by each of the atmo-

spheric moisture conditions, we assume that the synergistic

benefits regarding the information content and retrieval error

will, however, qualitatively not change.

Both the synergistic and MWR-only retrieval setup reach

convergence rates of nearly 100%. The retrieval based on pure

dual-frequency radar observations shows lower convergence

rates due to missing radar observations above cloud layer:

there, all information content is determined by the prior cli-

matology. Therefore, in the following, we analyze a reduced

subsample of 212 cases that converge and pass the x2 test in all

different retrieval configurations.

All retrieval setups cover the expected spread of IWV below

cloud base given by the radiosondes as shown in Fig. 6a. The

median values agree with the RS within 0.5 kgm22. The setups

using radar-only observations show application potential for

retrieving the partial IWV amount below cloud base. The setups

including the G2 observations show an increasing correlation

r to 0.9, and a decreasing RMS compared to the MWR-only

retrieval runs. In case of the MWR 1 KaW combination, the

opposite is true with theRMS increasing to 1 kgm22. As shown

in Fig. 6b, the medians of both synergistic retrieved LWPs

agree with the assumed LWP of 50 gm22 due to the infor-

mation included by the MWR. 50% of the results lie within

the range of 620 gm22. However, the LWP retrieved from

radar-only observations disagrees significantly with the as-

sumed LWP of 50 gm22. KaW-only overestimates the LWP,

showing a large spread of the retrieved values of about

100 gm22; DAR G2 underestimates the LWP significantly, and

the spread of the data is low. This discrepancy can be explained

by the different sensitivity of the DWR signal to differential

liquid water and water vapor attenuation (see Fig. 2). In case of

KaW, the signal is similarly affected by both liquid water and

water vapor attenuation: the retrieval overcompensates the lack

of variation in DWR signal under changing water vapor condi-

tions by increasing the LWP state in order to find a converging

solution. In contrast, the sensitivity ofDWRG2 to liquidwater is

smaller, and the LWP result is driven by the prior state.

The distribution of total available DFS is shown in Fig. 7 for

all retrieval setups. The MWR-only retrieval contains on av-

erage 3.2 DFS. Using the synergistic approach of combining

MWR and KaW (DAR G2) observations, the total DFS in-

crease on average by 5.3% (38.7%) to 3.4 (4.5). In case of using

the radar-only observations, the total DFS using the DAR G2

frequencies are on average higher (DFS 5 1.8) than the DFS

using KaW (DFS5 1.4). In the synergistic setups, larger water

vapor contents below cloud top generally lead to higher DFS.

Figure 8 and Table 3 provide information about the vertical

distribution of the information content available to the dif-

ferent retrieval configurations. Below and within the cloud

layer, the information content of the synergistic MWR 1 G2

retrieval originates from the DAR G2 observations, as the

DAR G2 and the synergistic setup both reach 1.8 DFS at

2000m.Above cloud top, the synergy increases the information

content by 0.2 DFS compared to the MWR-only setup. In case

of KaW, this synergy effect is not pronounced due to the DWR

KaW signal attenuation ambiguities (see section 3). However,

this sensitivity to liquid attenuation leads to an information

gain for the LWP state: in case of KaW-only to about 0.9 DFS,

whereas DAR G2 contains no information about the LWP.

In both synergistic and the MWR-only retrievals, the MWR

provides 1 DFS for the LWP.

FIG. 6. Difference between (a) retrieved partial IWV to RS

partial IWV and (b) retrieved LWP to assumed LWP for all dif-

ferent retrieval setups. Shown are median (red), 10th, 25th, 75th,

and 90th percentiles (blue) and outliers (black) of MWR-only,

radar-only, and synergistic setups analyzed for KaW and G2 DAR

pairs. The top and bottom numbers in (a) refer to the Pearson

correlation coefficient r and the RMS error, respectively. All

physical converging cases of quality-controlled radiosonde pro-

files from 2018 were analyzed, resulting in 212 analyzed cases that

converged in all different retrieval configurations.

FIG. 7. Frequency of occurrence of total DFS, including DFS for

LWP and all water vapor states. All 212 cases analyzed in Fig. 6

were considered using the MWR-only (blue), dual-frequency

radar-only (green), and the synergistic retrieval setup (red);

dual-frequency radar observations were evaluated for the KaW

frequencies (solid), and DAR G2-frequencies (dashed).
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Corresponding to the areas of increased information con-

tent, the retrieval error is reduced particularly above and in the

upper cloud layer when combining MWR with DAR G2 as

shown in Fig. 9. This synergistic effect is most pronounced

between cloud top up and 3500m, resulting in an error de-

crease of up to 0.2 gm23 compared to theMWR-only retrieval.

Below and in the lowest cloud layers, the MWR 1 G2 error is

similar to the G2-only retrieval error, leading to a reduction

compared to the MWR-only approach of 28% from 1.4 to

1.0 gm23. Combining KaW and MWR observations leads to a

small error decrease around cloud base of less than 5%, but not

to a significant improvement in other areas.

Even though the increase of DFS and the decrease of error is

small in case of a synergy of MWR and KaW, a combination of

the instruments adds valuable information to the humidity profile

retrieval, as passive observations alone cannot successfully parti-

tion the retrievedwater vapor profile in sub-, in-, and above-cloud

layers. Additionally, KaW can add information about LWP and

LWCas shownbyHogan et al. (2005).As opposed toKaW,DAR

G2 is almost insensitive to liquid water, and contains information

about the water vapor distribution below and throughout the

cloud layer. Therefore, theMWRprovides the information about

LWP in the synergistic MWR 1 G2 setup. Compared to the

MWR-only approach, the water vapor information content is

increased above the cloud layer due to the instrument synergy.

b. Synergistic retrieval sensitivity to forward model,
observation errors, and prior

After analyzing the retrieval error and information content

for varying water vapor conditions, we now investigate the

synergistic MWR 1 G2 retrieval sensitivity to changing for-

ward model assumptions, observation errors, prior covari-

ances, and radar detection thresholds.

The error associated with the forward model assumptions on

LWCprofile shape, effective radius, andDSD can be estimated

following Rodgers (2000) if the parameter errors are uncorre-

lated. Therefore, we independently compare the observations

resulting from the standard setup as described in section 2a to

simulationswith an adiabatic-like linearly increasingLWCprofile;

an increased effective radius reff of 15mm; and a decreased DSD

shape parameter sDSD of 0.2. The LWP of 50 gm22 is maintained

in all simulations. Based on the case study profile presented in

section 4, we also evaluate the retrieval errors induced by the

change of each parameter in the forward function when retrieving

from the standard simulated observations.

We find that varying the LWC profile shape produces vari-

abilities in the DWRs of less than 1% in case of the KaW pair

and leaves the DWR G2 invariable. These variations induce

changes in the total DFS of less than 0.1, and of less than

0.1 gm23 in the retrieval error, respectively. Varying reff or

sDSD does not impact the observations or the retrieval error

significantly. Thus, we neglect these error contributions under

the condition that the non-Rayleigh scattering regime is not

reached. Additional uncertainties to the MWR TB introduced

by absorption model uncertainties as discussed in Cimini et al.

(2018) are assumed to be within the range of the before-

mentioned analyses performed for doubled TB errors.

FIG. 8. Mean DFS, vertically cumulated and depicted per re-

trieval state. Experiment setup, colors, and line style as in Fig. 6.

Note that states between 4000 and 20 000m are not resolved for

figure clarity, but are considered in the calculation.

TABLE 3. Mean DFS for 212 cases converging in all varying re-

trieval configurations using MWR and KaW or DAR G2 obser-

vations. Given are the total DFS, the LWP DFS, the sum of DFS

for all WV states, and the partial water vapor DFS for below,

within, and above the cloud layer.

DFS

MWR and

MWR

Dual-

frequency radar

KaW G2 KaW G2

Total 3.38 4.45 3.21 1.42 1.82

LWP 0.99 0.99 0.99 0.88 0.02

WV 2.39 3.45 2.21 0.53 1.80

WVbelow 0.51 0.83 0.45 0.48 0.84

WVin 0.42 1.00 0.36 0.04 0.96

WVabove 1.45 1.63 1.41 0.0 0.0

FIG. 9. Mean a posteriori retrieval error of retrieved absolute

humidity per retrieval grid step, shown here up to 4000m.

Experiment setup, colors, and line styles are as in Fig. 6; prior

uncertainty shown in orange.
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To quantify the synergistic benefit under varying observa-

tional error magnitudes, we repeat the statistical synergistic

MWR1G2 analysis while varying the diagonal elements of

the y-covariance matrix, as well as the noise of the respec-

tive observations accordingly: doubled TB error, doubled

DWR error and halved relative r2m error. Modeling an

optimally intercalibrated dual-frequency radar instrument,

we also investigate the impact of adding the same random

noise factor to both Ze, and reducing the DWR noise to

0.05 dB. Additionally, we test the sensitivity of the MWR 1
G2 retrieval to the magnitude of the prior covariance matrix

by multiplying all elements of Sa by various factors (here

shown for 200) while conserving the correlation between

all elements. In all setups, the measurement errors are as-

sumed to be uncorrelated. Figure 10a shows the mean square

root of all Sop diagonal elements for a subsample of 203

cases which reach true convergence in all different retrieval

configurations.

Doubling the TB error leads to an increase of the retrieval

uncertainty above cloud top by 0.1 gm23. Doubling the DWR

error, which would correspond to a lowering of the radar SNR,

leads to an increase of error in and under the cloud layer of

around 0.1 gm23. Halving the r2m uncertainty improves the

retrieval performance by 0.1 gm23 in the layers just above

ground. The largest impact is seen when the radar system is

assumed to be perfectly intercalibrated. Then, the retrieval

error decreases particularly within the cloud layer and, right

below cloud top, reduces by 1.0 gm23 compared to the original

MWR 1 G2 setup. Simultaneously, the DFS nearly double

within the cloud layer (not shown). The retrieval error is in-

sensitive to magnitude changes of the prior covariance matrix

as long as the correlations between all elements are conserved.

The presented error sensitivity study is particularly important

when moving from synthetic to real observations. The DWR

uncertainty in particular could be enhanced for real instru-

ments to account for sensor misalignment and nonuniform

beam filling effects, as well as due to the vertical dependence of

the radar’s SNR. Hogan et al. (2005) further describe how to

quantify these errors.

As discussed in section 3, current G-band radars might only

be able to penetrate the lowest cloud layers.While the analyses

before assumed that the entire cloud layer is penetrated in-

dependent from radar sensitivity thresholds, the dependence

of theMWR1G2 synergy retrieval to partial cloud profiling is

now investigated. We therefore run the retrieval with a dif-

ferent observation vector configuration which consists of all

TBs, r2m, and the DWR calculated only for those layers, where

the reflectivity in both frequencies lies above the respective sen-

sitivity limit. As the received power is inversely proportional to

the square of the range, the respective thresholds were calculated

for each cloud layer. A threshold of 250dBz at 1000m was se-

lected based on the single-pulse VIPR sensitivity with a range

resolution of 150m, whereas a sensitivity of 260dBz is assumed

to be achievable with future, more powerful transmitters.

Only 33.3% of the simulated 174.8GHz reflectivities at

1000m reach a reflectivity of larger than 250 dBz. In 96% of

these cases, only the lowest cloud layer right above cloud

base is detected, and, thus, only one DWR measurement is

added to the observation vector. With a sensitivity threshold

of 260 dBz, the lowest cloud layer can be observed for all

simulated cases. Toward cloud top, the number of detected

cases reduces to 60.0% at 1500m, and 7.6% at cloud top.

Thus, the number of DWR in the observation vector varies de-

pending on each specific case. The retrieval error and information

content of the same subset of 203 cases were analyzed, and are

summarized in Fig. 10b and Table 4. For comparison, the error

and information content for the retrieval without detection

thresholds are added to the analysis.

When a sensitivity of250 dBz is assumed, the retrieval error

of the synergy setup is mainly reduced below and within the

lowest cloud layer, as noDWRobservations above are available.

FIG. 10. Mean synergistic a posteriori retrieval error for syner-

gistic MWR 1 G2 retrieval calculated based on 203 converging

cases with different retrieval setups: (a) the standard retrieval with

varying Se and Sa components and (b) a setup with a reduced ob-

servation vector setup withMWRTBs, DWR above the respective

radar sensitivity threshold, and r2m. Shown are the mean errors for

the standard synergistic retrieval (black), the MWR-only configu-

ration (blue), and (a) doubled TB uncertainty (cyan), halved r2m
error (green), doubled DWR error (orange), and reduced and

coupled DWR error (magenta), as well as inflated prior covariance

(gray); (b) a reduced observation vector setup usingMWRTBs and

DWR calculated for layers with Ze above 250 dBz (olive) and

above 260 dBz (purple).

TABLE 4. Mean DFS for 203 converging cases, calculated for

MWR1G2 synergistic setupwithout sensitivity restrictions, with a

radar sensitivity of 250 and 260 dBz applied, and the MWR-only

retrieval setup.

DFS MWR MWR1G2

MWR 1 G2,

260 dBz

MWR1G2,

250 dBz

Total 3.09 4.16 3.94 3.50

LWP 0.99 0.99 0.99 0.99

WV 2.10 3.17 2.95 2.50

WVbelow 0.51 0.85 0.85 0.77

WVin 0.39 0.90 0.72 0.46

WVabove 1.20 1.43 1.38 1.27
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The reduction of error compared to an MWR-only setup is ac-

companied by a gain of information content for the water vapor

profile below the cloud. Compared to the optimal MWR 1 G2

setup, the slightly reduced information content below cloud

leads to an increase of retrieval error of 1.0 gm23. Throughout

the cloud layer, the retrieval error blends with the MWR-only

error, as no additional observations are available. The syner-

gistic information content gain above the cloud layer is reduced.

When applying a threshold of 260dBz, DWR observations

are available deeper into the cloud layer. Therefore, the infor-

mation content is reduced particularly throughout the cloud

layer compared to the optimal setup, and the retrieval error

increases toward cloud top with decreasing availability of ob-

servations. However, the synergistic information gain above the

cloud layer is only marginally reduced compared to the optimal

setup, leading to an increase of total DFS by 0.9 compared to the

MWR-only retrieval (vs 1.1 DFS for the original MWR 1 G2).

Even though the synergistic benefits are less pronounced

when a sensitivity threshold is considered, our results suggest

that a synergistic deployment of MWR and DARG2 would be

beneficial even with current technological detection thresholds.

6. Conclusions and future studies
Continuous, high-resolution water vapor profile observa-

tions in the lower troposphere are essential for quantifying

shallow convective processes and characterizing cloud and

precipitation formation. Especially in the trade wind regions,

high resolution observations are needed, for example, to

evaluate the representation of shallow convective cloud pa-

rameterization in models. Synergistic retrievals using ground-

based active and passive remote sensing observations can help

close this observational gap, e.g., in between regular radio-

sonde network launch times. In clear-sky cases, lidar systems

give very accurate profiles of water vapor; in cloudy conditions,

however, these observational methods fail to reproduce the

atmospheric state within and above the cloud layer due to

signal saturation. In these cases, the approach presented in this

study can help to complement the picture.

In this paper, we present the potential of a novel synergistic,

optimal estimation-based retrieval approach combining micro-

wave radiometer and dual-frequency radar observations.

Specifically, we use synthetic observations of TB and DWR to

quantify the synergistic benefits of combining MWR with ei-

ther the Ka- andW-band radars (KaW), e.g., available at BCO,

or with a novel differential absorption radar prototype (Roy

et al. 2020) using frequencies of 167 and 174.8GHz (G2). The

simulatedG2 radar reflectivities and resulting dual-wavelength

ratios show a higher sensitivity to changing water vapor con-

ditions than the KaW simulations. However, the simulated

observations suggest that full-cloud profilingmight in reality be

impaired by current G-band radar sensitivity thresholds in

shallow cloud scenarios such as modeled in this study.

We retrieve the full-column absolute humidity profile as well

as the LWP for a single-layered liquid cloud scenario typical

for the atmospheric conditions observed at BCO, assuming

full-cloud profiling. The synergistic approach combines the

advantages of both instruments: the high potential of theMWR

for retrieving integrated quantities such as IWV, LWP and

coarse water vapor profiles throughout the column; and the

high profiling potential of dual-frequency radar, providing the

partial water vapor amounts between the radar range gates in

the presence of backscattering targets.

Based on case study results and the statistical analysis of

different water vapor conditions, we find that the combination

of MWR 1 KaW only marginally increases the total retrieval

information content compared to the retrieval based on pure

MWR observations (3.4 vs 3.2 DFS). Within the cloud layer,

the increasing ambiguity of separating liquid and water vapor

impacts in the DWR signal leads to reduced DWR signal

ranges for varying water vapor conditions. The addition of

KaW radar observations to the retrieval could, however, be

beneficial for deriving cloud-base and cloud-top height, partial

IWV amount up to cloud base, and the LWC profile (e.g.,

Hogan et al. 2005; Zhu et al. 2019). The analysis could also be

further expanded to drizzling clouds by combining the pre-

sented algorithm with the modified Frisch approach presented

by Küchler et al. (2018).
The combination of DARG2 andMWR, on the other hand,

increases the information content on average by 1 DFS to 4.4,

particularly below and within the cloud layer. There, the radar

observations provide all information for the water vapor states.

The full potential of this synergy is seen above the cloud layer

where the synergistic information content is enhanced com-

pared to the MWR-only and DAR G2-only setup.

The results show sensitivity to the assumed measurement

errors, particularly to the radar uncertainties. To gain the full

synergistic potential of this approach, more sensitive G-band

radars are needed for future applications. Increasing sensitiv-

ity, for example, through increased transmitter power, is re-

quired in order to fully profile the shallow clouds observed at

BCO. Albeit, when applying the retrieval to real observations,

further sources of uncertainty will have to be quantified: beam

mismatching of the instruments, misalignment of the radar

antennas, intercalibration discrepancies of the radars, hori-

zontal spacing between the instruments (Küchler and Löhnert
2019), and nonuniform beam filling effects. By operating the

VIPR instrument (Roy et al. 2020) at BCO in close vicinity of

the HATPRO, these uncertainties could be further quantified,

and the detection limits, as well as the synergistic retrieval,

could be further evaluated.

This synthetic study will be expanded to more complex cloud

scenarios observed at BCO. The synergistic benefit will be fur-

ther analyzed for cases of double-layered liquid clouds, aswell as

overlying ice cirrus clouds, expanding the presented study to a

larger variation of more realistic scenarios. For these cases, we

expect the synergistic benefit analysis to be more complicated

due to assumptions about the partitioning of LWP per cloud

layer, as well as non-Rayleigh-scattering effects influencing the

radar observations. In cases of multiple-layer clouds, however,

we also expect the synergy to be more pronounced due to in-

creased information content between the cloud layers.

To further customize this retrieval to typical trade wind

boundary layers and enhance the synergistic effects, the effects

of additional constraining tools will be analyzed: reducing

retrieval states by parameterizing the profiles in sub-, in-,

and above cloud; including the surface temperature and the
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assumption of a well-mixed BL under cloud base; forcing

humidity saturation within the cloud layer through a simul-

taneous temperature profiling retrieval; using cloud-top

height as a proxy for the inversion layer height; and ana-

lyzing the retrieval performance for circulation-dependent

prior conditions. Further analyses will investigate the po-

tential of including the direct inversion approach presented

by Roy et al. (2020) into the synergy concept.

To overcome current G-band radar sensitivity constraints in

highmoisture and shallow cloud conditions such as observed in

the trades, current detection limits would have to be enhanced.

However, the application of this synergy concept is not limited

to the trade wind region: a synergy application of MWR and

current high-frequency radar instruments would be particularly

beneficial in drier environments, such as at midlatitude observa-

tories like the Jülich Observatory for Cloud Evolution (JOYCE;

Löhnert et al. 2015), or in the Arctic environment. Further ana-

lyses, including the air- and spaceborne application, will also

contribute to assimilation strategies in numerical weather

models, as well as to both satellite calibration and product

evaluation campaigns. Synergy concepts of passive and active

microwave sensors such as discussed in this study will con-

tribute to closing the current gap of continuous, high-resolution

water vapor observations in the cloudy boundary layer.

Acknowledgments. This study was funded by the HD(CP)2

project that is funded by the German Federal Ministry of

Education and Research (BMBF) within the framework

program ‘‘Research for Sustainable Development (FONA)’’

under Grant 01 LK1502E. The author’s research stay at BCO

was funded by the Graduate School of Geosciences (GSGS),

University of Cologne, through Grant GSGS-2019A-03. We

thank Friedhelm Jansen from Max Planck Institute for

Meteorology (MPI-M) for support and assistance in the mea-

surements performed at BCO,R.Roy andA.Myagkov for their

comments on current radar sensitivity potential, and M. Maahn

for support with the OE library available in Maahn et al. (2020).

We thank the anonymous reviewers for their improving sug-

gestions on the manuscript.

REFERENCES

Abel, S. J., and B. J. Shipway, 2007: A comparison of cloud-

resolving model simulations of trade wind cumulus with air-

craft observations taken during RICO.Quart. J. Roy. Meteor.

Soc., 133, 781–794, https://doi.org/10.1002/qj.55.
Barrera-Verdejo, M., S. Crewell, U. Löhnert, E. Orlandi, and P. Di

Girolamo, 2016: Ground-based lidar and microwave radiom-

etry synergy for high vertical resolution absolute humidity

profiling. Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/
10.5194/amt-9-4013-2016.

Battaglia, A., and P. Kollias, 2019: Evaluation of differential ab-

sorption radars in the 183GHz band for profiling water vapour

in ice clouds. Atmos. Meas. Tech., 12, 3335–3349, https://

doi.org/10.5194/amt-12-3335-2019.

——, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage,

U. Löhnert, J. Tyynelä, and G. W. Petty, 2014: G band at-

mospheric radars: New frontiers in cloud physics. Atmos.

Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-

2014.

Cimini, D., P. W. Rosenkranz, M. Y. Tretyakov, M. A. Koshelev,

and F. Romano, 2018: Uncertainty of atmospheric microwave

absorption model: Impact on ground-based radiometer sim-

ulations and retrievals.Atmos. Chem. Phys., 18, 15 231–15 259,

https://doi.org/10.5194/acp-18-15231-2018.

Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer

temperature profiles retrievedwithmultifrequencymultiangle

microwave radiometry. IEEETrans. Geosci. Remote Sens., 45,

2195–2201, https://doi.org/10.1109/TGRS.2006.888434.

Ebell, K., E. Orlandi, A. Hünerbein, U. Löhnert, and S. Crewell,

2013: Combining ground-based with satellite-based measure-

ments in the atmospheric state retrieval: Assessment of the

information content. J. Geophys. Res. Atmos., 118, 6940–6956,

https://doi.org/10.1002/jgrd.50548.

——, U. Löhnert, E. Päschke, E. Orlandi, J. H. Schween, and

S. Crewell, 2017: A 1-D variational retrieval of temperature,

humidity, and liquid cloud properties: Performance under

idealized and real conditions. J. Geophys. Res. Atmos., 122,

1746–1766, https://doi.org/10.1002/2016JD025945.

Ellis, S. M., and J. Vivekanandan, 2011: Liquid water content

estimates using simultaneous S- and Ka-band radar mea-

surements. Radio Sci., 46, RS2021, https://doi.org/10.1029/

2010RS004361.

Foth, A., and B. Pospichal, 2017: Optimal estimation of water va-

pour profiles using a combination of Raman lidar and micro-

wave radiometer. Atmos. Meas. Tech., 10, 3325–3344, https://

doi.org/10.5194/amt-10-3325-2017.

Görsdorf, U., V. Lehmann, M. Bauer-Pfundstein, G. Peters,

D. Vavriv, V. Vinogradov, and V. Volkov, 2015: A 35-GHz

polarimetric Doppler radar for long-term observations of

cloud parameters—Description of system and data processing.

J. Atmos.Oceanic Technol., 32, 675–690, https://doi.org/10.1175/

JTECH-D-14-00066.1.

Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere

and surface. Climate Change 2013: The Physical Science Basis,

T. F. Stocker et al., Eds., Cambridge University Press, 159–254,

https://doi.org/10.1017/CBO9781107415324.008.

Held, I. M., and B. J. Soden, 2006: Robust responses of the hy-

drological cycle to global warming. J. Climate, 19, 5686–5699,

https://doi.org/10.1175/JCLI3990.1.

Hogan, R. J., N. Gaussiat, andA. J. Illingworth, 2005: Stratocumulus

liquid water content from dual-wavelength radar. J. Atmos.

Oceanic Technol., 22, 1207–1218, https://doi.org/10.1175/

JTECH1768.1.

Holloway, C. E., and J. D. Neelin, 2009:Moisture vertical structure,

column water vapor, and tropical deep convection. J. Atmos.

Sci., 66, 1665–1683, https://doi.org/10.1175/2008JAS2806.1.

Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous

evaluation of cloud profiles in seven operational models us-

ing ground-based observations. Bull. Amer. Meteor. Soc., 88,

883–898, https://doi.org/10.1175/BAMS-88-6-883.

Jacob, M., F. Ament, M. Gutleben, H. Konow,M.Mech,M.Wirth,

and S. Crewell, 2019: Investigating the liquid water path over

the tropical Atlantic with synergistic airborne measurements.

Atmos. Meas. Tech., 12, 3237–3254, https://doi.org/10.5194/

amt-12-3237-2019.

Küchler, N., and U. Löhnert, 2019: Radar-radiometer-based liquid

water content retrievals of warm low-level clouds: How the

measurement setup affects retrieval uncertainties. IEEE

J. Sel. Top. Appl. Earth Obs. Remote Sens., 12, 1355–1361,

https://doi.org/10.1109/JSTARS.2019.2908414.

——, S. Kneifel, U. Löhnert, P. Kollias, H. Czekala, and T. Rose,

2017: A W-band radar–radiometer system for accurate and

NOVEMBER 2020 S CHN I T T ET AL . 1985

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/11/1973/5012055/jtechd190110.pdf by FO
R

SC
H

U
N

G
SZEN

TR
U

M
 JU

ELIC
H

 G
M

BH
 user on 01 D

ecem
ber 2020

https://doi.org/10.1002/qj.55
https://doi.org/10.5194/amt-9-4013-2016
https://doi.org/10.5194/amt-9-4013-2016
https://doi.org/10.5194/amt-12-3335-2019
https://doi.org/10.5194/amt-12-3335-2019
https://doi.org/10.5194/amt-7-1527-2014
https://doi.org/10.5194/amt-7-1527-2014
https://doi.org/10.5194/acp-18-15231-2018
https://doi.org/10.1109/TGRS.2006.888434
https://doi.org/10.1002/jgrd.50548
https://doi.org/10.1002/2016JD025945
https://doi.org/10.1029/2010RS004361
https://doi.org/10.1029/2010RS004361
https://doi.org/10.5194/amt-10-3325-2017
https://doi.org/10.5194/amt-10-3325-2017
https://doi.org/10.1175/JTECH-D-14-00066.1
https://doi.org/10.1175/JTECH-D-14-00066.1
https://doi.org/10.1017/CBO9781107415324.008
https://doi.org/10.1175/JCLI3990.1
https://doi.org/10.1175/JTECH1768.1
https://doi.org/10.1175/JTECH1768.1
https://doi.org/10.1175/2008JAS2806.1
https://doi.org/10.1175/BAMS-88-6-883
https://doi.org/10.5194/amt-12-3237-2019
https://doi.org/10.5194/amt-12-3237-2019
https://doi.org/10.1109/JSTARS.2019.2908414


continuous monitoring of clouds and precipitation. J. Atmos.

Oceanic Technol., 34, 2375–2392, https://doi.org/10.1175/

JTECH-D-17-0019.1.

——,——,P. Kollias, andU. Löhnert, 2018: Revisiting liquid water

content retrievals in warm stratified clouds: The modified

Frisch. Geophys. Res. Lett., 45, 9323–9330, https://doi.org/

10.1029/2018GL079845.

Lebsock, M. D., K. Suzuki, L. F. Millán, and P. M. Kalmus, 2015:

The feasibility of water vapor sounding of the cloudy bound-

ary layer using a differential absorption radar technique.

Atmos. Meas. Tech., 8, 3631–3645, https://doi.org/10.5194/

amt-8-3631-2015.

Löhnert, U., S. Crewell, C. Simmer, and A. Macke, 2001: Profiling

cloud liquid water by combining active and passive micro-

wave measurements with cloud model statistics. J. Atmos.

Oceanic Technol., 18, 1354–1366, https://doi.org/10.1175/

1520-0426(2001)018,1354:PCLWBC.2.0.CO;2.

——, ——, and ——, 2004: An integrated approach toward re-

trieving physically consistent profiles of temperature, humid-

ity, and cloud liquid water. J. Appl. Meteor., 43, 1295–1307,

https://doi.org/10.1175/1520-0450(2004)043,1295:AIATRP.
2.0.CO;2.

——, D. D. Turner, and S. Crewell, 2009: Ground-based temper-

ature and humidity profiling using spectral infrared and micro-

wave observations. Part I: Simulated retrieval performance in

clear-sky conditions. J. Appl. Meteor. Climatol., 48, 1017–1032,
https://doi.org/10.1175/2008JAMC2060.1.

——, and Coauthors, 2015: JOYCE: Jülich Observatory for Cloud

Evolution. Bull. Amer. Meteor. Soc., 96, 1157–1174, https://

doi.org/10.1175/BAMS-D-14-00105.1.

Maahn, M., D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G.

Mace, and J. M. Comstock, 2020: Optimal estimation re-

trievals and their uncertainties: What every atmospheric

scientist should know. Bull. Amer. Meteor. Soc., 101, E1512–
E1523, https://doi.org/10.1175/BAMS-D-19-0027.1.

Maschwitz, G., U. Löhnert, S. Crewell, T. Rose, and D. D. Turner,

2013: Investigation of ground-based microwave radiometer

calibration techniques at 530 hPa. Atmos. Meas. Tech., 6,

2641–2658, https://doi.org/10.5194/amt-6-2641-2013.

Mech, M., M. Maahn, S. Kneifel, D. Ori, E. Orlandi, P. Kollias,

V. Schemann, and S. Crewell, 2020: PAMTRA 1.0: The Passive

and Active Microwave radiative Transfer tool for simulating

radiometer and radar measurements of the cloudy atmosphere.

Geosci.ModelDev., 13, 4229–4251, https://doi.org/10.5194/gmd-

13-4229-2020.

Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud

droplet size distributions in low-level stratiform clouds.

J. Atmos. Sci., 57, 295–311, https://doi.org/10.1175/1520-

0469(2000)057,0295:CDSDIL.2.0.CO;2.

Millán, L., M. Lebsock, N. Livesey, and S. Tanelli, 2016: Differential

absorption radar techniques: Water vapor retrievals. Atmos.

Meas. Tech., 9, 2633–2646, https://doi.org/10.5194/amt-9-

2633-2016.

Nehrir, A. R., and Coauthors, 2017: Emerging technologies and

synergies for airborne and space-based measurements of wa-

ter vapor profiles. Surv. Geophys., 38, 1445–1482, https://

doi.org/10.1007/s10712-017-9448-9.

Nuijens, L., I. Serikov, L. Hirsch, K. Lonitz, and B. Stevens, 2014:

The distribution and variability of low-level cloud in the North

Atlantic trades. Quart. J. Roy. Meteor. Soc., 140, 2364–2374,
https://doi.org/10.1002/qj.2307.

Pincus, R., D. Winker, S. Bony, and B. Stevens, Eds., 2018:

Shallow Clouds, Water Vapor, Circulation, and Climate

Sensitivity. Space Sciences Series of ISSI, Springer Interna

tional Publishing, 396 pp., https://doi.org/10.1007/978-3-

319-77273-8.

Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding:

Theory and Practice. World Scientific, 238 pp.

Rose, T., S. Crewell, U. Löhnert, and C. Simmer, 2005: A network

suitable microwave radiometer for operational monitoring of

the cloudy atmosphere. Atmos. Res., 75, 183–200, https://

doi.org/10.1016/j.atmosres.2004.12.005.

Roy, R. J., M. Lebsock, L. Millán, and K. B. Cooper, 2020:

Validation of a G-band differential absorption cloud radar for

humidity remote sensing. J. Atmos. Oceanic Technol., 37,

1085–1102, https://doi.org/10.1175/JTECH-D-19-0122.1.

Schnitt, S., E. Orlandi, M. Mech, A. Ehrlich, and S. Crewell,

2017: Characterization of water vapor and clouds during the

Next-Generation Aircraft Remote Sensing for Validation

(NARVAL) south studies. IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens., 10, 3114–3124, https://doi.org/10.1109/

JSTARS.2017.2687943.

Schröder, M., and Coauthors, 2019: The GEWEX water vapor

assessment: Overview and introduction to results and recom-

mendations. Remote Sens., 11, 251, https://doi.org/10.3390/

rs11030251.

Sherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova,

2010: Tropospheric water vapor, convection, and climate. Rev.

Geophys., 48, RG2001, https://doi.org/10.1029/2009RG000301.

Stankov, B. B., 1998: Multisensor retrieval of atmospheric prop-

erties.Bull. Amer. Meteor. Soc., 79, 1835–1854, https://doi.org/

10.1175/1520-0477(1998)079,1835:MROAP.2.0.CO;2.

Stevens, B., andCoauthors, 2016: TheBarbados CloudObservatory:

Anchoring investigations of clouds and circulation on the edge

of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787–801, https://

doi.org/10.1175/BAMS-D-14-00247.1.

——, H. Brogniez, C. Kiemle, J.-L. Lacour, C. Crevoisier, and

J. Kiliani, 2017: Structure and dynamical influence of water

vapor in the lower tropical troposphere. Surv. Geophys., 38,

1371–1397, https://doi.org/10.1007/s10712-017-9420-8.

Tian, L., G. M. Heymsfield, L. Li, and R. C. Srivastava, 2007:

Properties of light stratiform rain derived from 10- and 94-GHz

airborne Doppler radars measurements. J. Geophys. Res., 112,

D11211, https://doi.org/10.1029/2006JD008144.

Turner, D. D., and U. Löhnert, 2014: Information content and un-

certainties in thermodynamic profiles and liquid cloud proper-

ties retrieved from the ground-based Atmospheric Emitted

Radiance Interferometer (AERI). J. Appl. Meteor. Climatol.,

53, 752–771, https://doi.org/10.1175/JAMC-D-13-0126.1.

Wagner, T. J., P. M. Klein, and D. D. Turner, 2019: A new gen-

eration of ground-based mobile platforms for active and pas-

sive profiling of the boundary layer. Bull. Amer. Meteor. Soc.,

100, 137–153, https://doi.org/10.1175/BAMS-D-17-0165.1.

Westwater, E. R., S. Crewell, and C. Mätzler, 2004: A review of

surface-based microwave and millimeter-wave radiometric

remote sensing of the troposphere. URSI Radio Sci. Bull.,

2004, 59–80, https://doi.org/10.23919/URSIRSB.2004.7909438.

Zhu, Z., K. Lamer, P. Kollias, and E. E. Clothiaux, 2019: The vertical

structure of liquid water content in shallow clouds as retrieved

fromdual-wavelength radarobservations. J.Geophys.Res.Atmos.,

124, 14 184–14197, https://doi.org/10.1029/2019JD031188.

1986 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/11/1973/5012055/jtechd190110.pdf by FO
R

SC
H

U
N

G
SZEN

TR
U

M
 JU

ELIC
H

 G
M

BH
 user on 01 D

ecem
ber 2020

https://doi.org/10.1175/JTECH-D-17-0019.1
https://doi.org/10.1175/JTECH-D-17-0019.1
https://doi.org/10.1029/2018GL079845
https://doi.org/10.1029/2018GL079845
https://doi.org/10.5194/amt-8-3631-2015
https://doi.org/10.5194/amt-8-3631-2015
https://doi.org/10.1175/1520-0426(2001)018<1354:PCLWBC>2.0.CO;2
https://doi.org/10.1175/1520-0426(2001)018<1354:PCLWBC>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<1295:AIATRP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<1295:AIATRP>2.0.CO;2
https://doi.org/10.1175/2008JAMC2060.1
https://doi.org/10.1175/BAMS-D-14-00105.1
https://doi.org/10.1175/BAMS-D-14-00105.1
https://doi.org/10.1175/BAMS-D-19-0027.1
https://doi.org/10.5194/amt-6-2641-2013
https://doi.org/10.5194/gmd-13-4229-2020
https://doi.org/10.5194/gmd-13-4229-2020
https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
https://doi.org/10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
https://doi.org/10.5194/amt-9-2633-2016
https://doi.org/10.5194/amt-9-2633-2016
https://doi.org/10.1007/s10712-017-9448-9
https://doi.org/10.1007/s10712-017-9448-9
https://doi.org/10.1002/qj.2307
https://doi.org/10.1007/978-3-319-77273-8
https://doi.org/10.1007/978-3-319-77273-8
https://doi.org/10.1016/j.atmosres.2004.12.005
https://doi.org/10.1016/j.atmosres.2004.12.005
https://doi.org/10.1175/JTECH-D-19-0122.1
https://doi.org/10.1109/JSTARS.2017.2687943
https://doi.org/10.1109/JSTARS.2017.2687943
https://doi.org/10.3390/rs11030251
https://doi.org/10.3390/rs11030251
https://doi.org/10.1029/2009RG000301
https://doi.org/10.1175/1520-0477(1998)079<1835:MROAP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<1835:MROAP>2.0.CO;2
https://doi.org/10.1175/BAMS-D-14-00247.1
https://doi.org/10.1175/BAMS-D-14-00247.1
https://doi.org/10.1007/s10712-017-9420-8
https://doi.org/10.1029/2006JD008144
https://doi.org/10.1175/JAMC-D-13-0126.1
https://doi.org/10.1175/BAMS-D-17-0165.1
https://doi.org/10.23919/URSIRSB.2004.7909438
https://doi.org/10.1029/2019JD031188

