000884114 001__ 884114
000884114 005__ 20210130005833.0
000884114 0247_ $$2doi$$a10.1128/JVI.01338-20
000884114 0247_ $$2ISSN$$a0022-538X
000884114 0247_ $$2ISSN$$a1070-6321
000884114 0247_ $$2ISSN$$a1098-5514
000884114 0247_ $$2Handle$$a2128/26249
000884114 0247_ $$2pmid$$a32907979
000884114 0247_ $$2WOS$$aWOS:000595866900008
000884114 037__ $$aFZJ-2020-03101
000884114 082__ $$a610
000884114 1001_ $$0P:(DE-HGF)0$$aTwizerimana, Augustin Penda$$b0
000884114 245__ $$aCell type-dependent escape of capsid inhibitors by simian immunodeficiency virus SIVcpz
000884114 260__ $$aBaltimore, Md.$$bSoc.$$c2020
000884114 3367_ $$2DRIVER$$aarticle
000884114 3367_ $$2DataCite$$aOutput Types/Journal article
000884114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605809954_26137
000884114 3367_ $$2BibTeX$$aARTICLE
000884114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884114 3367_ $$00$$2EndNote$$aJournal Article
000884114 520__ $$aPandemic human immunodeficiency virus type 1 (HIV-1) is the result of the zoonotic transmission of simian immunodeficiency virus (SIV) from the chimpanzee subspecies Pan troglodytes troglodytes (SIVcpzPtt). The related subspecies Pan troglodytes schweinfurthii is the host of a similar virus, SIVcpzPts, which did not spread to humans. We tested these viruses with small-molecule capsid inhibitors (PF57, PF74, and GS-CA1) that interact with a binding groove in the capsid that is also used by CPSF6. While HIV-1 was sensitive to capsid inhibitors in cell lines, human macrophages, and peripheral blood mononuclear cells (PBMCs), SIVcpzPtt was resistant in rhesus FRhL-2 cells and human PBMCs but was sensitive to PF74 in human HOS and HeLa cells. SIVcpzPts was insensitive to PF74 in FRhL-2 cells, HeLa cells, PBMCs, and macrophages but was inhibited by PF74 in HOS cells. A truncated version of CPSF6 (CPSF6-358) inhibited SIVcpzPtt and HIV-1, while in contrast, SIVcpzPts was resistant to CPSF6-358. Homology modeling of HIV-1, SIVcpzPtt, and SIVcpzPts capsids and binding energy estimates suggest that these three viruses bind similarly to the host proteins cyclophilin A (CYPA) and CPSF6 as well as the capsid inhibitor PF74. Cyclosporine treatment, mutation of the CYPA-binding loop in the capsid, or CYPA knockout eliminated the resistance of SIVcpzPts to PF74 in HeLa cells. These experiments revealed that the antiviral capacity of PF74 is controlled by CYPA in a virus- and cell type-specific manner. Our data indicate that SIVcpz viruses can use infection pathways that escape the antiviral activity of PF74. We further suggest that the antiviral activity of PF74 capsid inhibitors depends on cellular cofactors.IMPORTANCE HIV-1 originated from SIVcpzPtt but not from the related virus SIVcpzPts, and thus, it is important to describe molecular infection by SIVcpzPts in human cells to understand the zoonosis of SIVs. Pharmacological HIV-1 capsid inhibitors (e.g., PF74) bind a capsid groove that is also a binding site for the cellular protein CPSF6. SIVcpzPts was resistant to PF74 in HeLa cells but sensitive in HOS cells, thus indicating cell line-specific resistance. Both SIVcpz viruses showed resistance to PF74 in human PBMCs. Modulating the presence of cyclophilin A or its binding to capsid in HeLa cells overcame SIVcpzPts resistance to PF74. These results indicate that early cytoplasmic infection events of SIVcpzPts may differ between cell types and affect, in an unknown manner, the antiviral activity of capsid inhibitors. Thus, capsid inhibitors depend on the activity or interaction of currently uncharacterized cellular factors.
000884114 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000884114 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000884114 588__ $$aDataset connected to CrossRef
000884114 7001_ $$0P:(DE-HGF)0$$aScheck, Rachel$$b1
000884114 7001_ $$0P:(DE-HGF)0$$aBecker, Daniel$$b2
000884114 7001_ $$0P:(DE-HGF)0$$aZhang, Zeli$$b3
000884114 7001_ $$0P:(DE-HGF)0$$aWammers, Marianne$$b4
000884114 7001_ $$0P:(DE-HGF)0$$aAvelar, Leandro$$b5
000884114 7001_ $$0P:(DE-HGF)0$$aPflieger, Marc$$b6
000884114 7001_ $$0P:(DE-HGF)0$$aHäussinger, Dieter$$b7
000884114 7001_ $$0P:(DE-HGF)0$$aKurz, Thomas$$b8
000884114 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b9$$ufzj
000884114 7001_ $$00000-0002-8026-9311$$aMünk, Carsten$$b10$$eCorresponding author
000884114 773__ $$0PERI:(DE-600)1495529-5$$a10.1128/JVI.01338-20$$gp. JVI.01338-20jvi;JVI.01338-20v1$$n23$$pe01338-20$$tJournal of virology$$v94$$x1098-5514$$y2020
000884114 8564_ $$uhttps://juser.fz-juelich.de/record/884114/files/Journal%20of%20Virology-2020-Twizerimana-e01338-20.full.pdf
000884114 8564_ $$uhttps://juser.fz-juelich.de/record/884114/files/JVI01338-20R1_Merged_PDF.pdf$$yPublished on 2020-11-09. Available in OpenAccess from 2021-05-09.
000884114 8564_ $$uhttps://juser.fz-juelich.de/record/884114/files/JVI01338-20R1_Merged_PDF.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-11-09. Available in OpenAccess from 2021-05-09.
000884114 909CO $$ooai:juser.fz-juelich.de:884114$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b9$$kFZJ
000884114 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000884114 9141_ $$y2020
000884114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000884114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ VIROL : 2018$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000884114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000884114 920__ $$lyes
000884114 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000884114 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000884114 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x2
000884114 980__ $$ajournal
000884114 980__ $$aVDB
000884114 980__ $$aUNRESTRICTED
000884114 980__ $$aI:(DE-Juel1)JSC-20090406
000884114 980__ $$aI:(DE-Juel1)NIC-20090406
000884114 980__ $$aI:(DE-Juel1)IBI-7-20200312
000884114 9801_ $$aFullTexts