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Abstract  

The main drivers of the transformation processes affecting electricity markets 
stem from climate policies and changing economic environments. In order to 
analyse the respective developments, modelling approaches regularly rely on 
multiple structural and parametric simplifications. For example, discontinuities in 
economic development (e.g., business cycles) are frequently disregarded. The 
distorting effects caused by such simplifications tend to scale up as the time 
horizons of such analyses increase, and can significantly affect the accuracy of 
long-term projections. In this study, we include information on economic 
discontinuities and elaborate on their influences. Based on historical data, we 
identify the impact of changes in economic parameters and examine their 
cumulative effect on the German electricity market by applying a techno-
economic electricity market model for the period from 2005 to 2014. Similar 
changes may occur repeatedly in the future, and we expect that a more 
comprehensive understanding of their effects will increase the validity of long-
term scenario assessments. Although dynamic developments have taken place 
in the past, their effects on such scenarios are regularly ignored. Results indicate 
that policy decision-making based on modelling frameworks can benefit from a 
comprehensive understanding of the underlying simplifications made in most 
scenario studies. 
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1 Introduction 

Mathematical models are tailored to address specific research questions and aim to 

describe the links between the main determinants of the system under investigation. In 

the field of energy and climate policy assessment, market modelling approaches provide 

valuable insights and often form the basis for political decision-making processes. 

However, the underlying assumptions made with respect to exogenous input parameters 

– such as GDP growth or energy-carrier prices – and their interdependencies can affect 

the validity of model-based scenario studies. As a result, the requirements for the scenario 

quality are high, calling into question their consistency [1,2]  and their ability to encompass 

a wide range of contextual uncertainties when combining environmental, economic, and 

energy perspectives [3,4]. For simplicity, the modelling frameworks applied to long-term 

energy-system studies tend to assume continuous (or persistent) and/or linear growth 

trends for key factors like economic growth, energy carrier prices, or technological 

improvements (efficiency, learning rates, etc.). Fig. 1 illustrates both past dynamics and 

forecasts of the main factors that influence the electricity markets, and are crucial for the 

assessment of future policies. Changes in energy carrier prices traded at the global 

markets may be a source of productivity shocks. The volatility of GDP and electricity 

consumption may have only national level effects, but in case of global crises, many 

countries or regions with integrated single markets (as the EU) follow a common path, 

with similar trends for energy carrier prices, GPD development, energy consumption and 

environmental policies. 

The further into the future the time horizon of the modelling framework lies, the more 

uncertainty arises regarding the adequacy of assuming linear trends, as comparison of 
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the projected developments with historical data casts doubt on the propriety of such 

assumptions and, ultimately, on the reliability of the derived scenarios. The use of 

simplified linear trends has been replaced with an extensive variety of statistical 

techniques that significantly improve the quality of long-term forecasts [5]. They result in 

the trends shown in Fig. 1, which do not reproduce short-term dynamics.  

 

Fig. 1. Comparison of historical developments and projected development trends of various scenario 
studies.  

Source: Author’s compilation based on historical data from [6–8] and projections from [9–11]. 

Although there is a close link between macroeconomic developments and the electricity 

market (e.g., due to an increasing or decreasing demand for power), business cycles and 

their relations to other key factors in the electricity market are generally overlooked in 

model-based scenarios.  

This article aims to evaluate the inaccuracies that arise from neglecting nonlinear 

developments and the cyclical behaviour of key parameters in modelling frameworks. By 

analysing disruptions in economic growth, electricity demand, commodity prices and the 
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expansion of generation capacities within the periods under consideration, we identified 

the implications for scenario analyses and modelling approaches. The German electricity 

market is the object of the study. By revealing the uncertainty caused by fluctuating 

patterns, the presented research will contribute to improving the informative value of 

energy-market modelling results and, ultimately, the effectiveness of the political decision-

making process in selecting future energy transition pathways. Furthermore, it will expand 

the extensive scientific discussion on parametric uncertainty in the field of energy market 

modelling. 

The presented research will assess the reference period from 2005 until 2014. With the 

financial crisis in 2007/08 bringing significant economic disruption, this period provides a 

conclusive overview of different growth and price patterns. This paper is organized as 

follows: Section 2 provides a brief overview of business cycles and links them to the 

concept of uncertainty and non-linearity in energy-market models. Section 3 introduces 

the applied modelling framework, scenarios and data sets. In Section 4, the results are 

presented and policy implications are discussed.  

2 Background and motivation 

Due to the financial crises of 2007-09 economic research of uncertainty again gained 

momentum in recent years (see e.g., Svetlova & Van Elst [12] and Jurado, Ludvigson & 

Ng [13]). The most prominent economic theories of uncertainty date back to the first half 

of the 20th century [14] – namely, the theoretical frameworks of Keynes (1921) [15], Hayek 

(1945) [16], Knight (1921) [17] and Shackle (1955) [18]. Based on those theories Svetlova 

and van Elst [12] differentiate the problem of decision-making under uncertainty in three 

categories: (i) risk in the exogenous world events that can be measured and represented 
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in known probabilities, (ii) uncertainty arising from ambiguity when probabilities of the 

known events are not known, and (iii) uncertainty arising from unawareness when 

economic agents do not have a complete information about the events themselves. In this 

sense, macroeconomic uncertainty (iii) as time varying conditional volatility in economic 

and financial indicators proves to be strongly countercyclical to the real activity, with 2007-

09 recession being the most representative episode of uncertainty increase since 1960 

[13]. In the effort to develop methodological frameworks that are able to assess economic 

uncertainty in the context of energy markets, there exists an extensive amount of research 

(see e.g., Fuss et al. 2012 [19], Kang & Ratti 2013 [20], Conejo 2010 [21]). The presented 

categorisation of economic uncertainty is not explicitly transferable to most modelling 

frameworks applied. Thus, in the field of energy models, uncertainty can be attributed to 

three major categories: (i) parametric, (ii) structural [22], and (iii) context uncertainty [23]. 

The first category describes uncertainty stemming from the initial input parameter data 

sets [24] and structural uncertainty refers to model-specific assumptions and 

simplifications [25], while context uncertainty specifies the nexus of possible 

developments in social, economic and technological environments, as well as policy 

uncertainties. Different approaches have been implemented to address structural 

uncertainty in the climate and energy scenarios [3,26], as well as in the scenarios for 

energy-intensive industries [27].  

Cyclical behaviour and the non-linearity of key input parameters can be interpreted as 

parametric uncertainty, and there are already several studies investigating cycles of 

certain elements within energy market models. Pesch et al. [23] analyse wind and solar 

time series with regard to their cyclical behaviour. Ford [24] and Arango & Larsen [25] 
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explore the occurrence of capacity cycles within deregulated markets, which exhibit a 

continual fluctuation of over- and underinvestment. Along with investment, inventory and 

business expenditures exhibit clearly procyclical behaviour within business cycles. 

Cuddington & Jerrett [28] model asymmetric mineral price cycles with ‘super-cycle 

amplitude’ in relation to the growth rate of the global economy and respective structural 

developments. Joëts, Mignon & Razafindrabe [29] in their analysis of energy, agricultural 

and industrial markets stress that commodity prices are highly affected by macroeconomic 

uncertainty related to global business cycle. 

The existing literature tends to avoid the issue of nonlinear patterns of energy commodity 

prices and prefers to assume linear time series – especially in the field of bottom-up 

perfect-foresight modelling. The application of real business-cycle theory to the analysis 

of environmental policies, changes in the energy sector and technological change has 

gained attention [30]. Applying the general equilibrium real business-cycle model, Heutel 

[31] proves that the chqanges of CO2 emissions as a result of supply (and/or productivity) 

shocks is significantly procyclical, and argues that optimal environmental policy would 

“dampen the procyclicality of emissions”. In the context of business cycles, the relationship 

between energy (or, specifically, electricity) consumption and economic growth has been 

of considerable interest [32], as well as the direction of the causality between them [33,34]. 

The results conclude a stronger association between these factors for countries with 

higher wealth, in some cases diverging in the estimations of the strength of the causual 

direction. In that respect, the influence of commodity prices also has to be taken into 

account. A broad variety of research examines the link between energy commodity prices 

(e.g., oil prices) and economic activity [35,36]. In particular, there is a high degree of 
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consensus in the literature that medium-term business cycles (i.e., ‘conventional’ business 

cycles of up to 8 years) are caused by energy price shocks [37], among other factors. In 

this paper, we do not focus on the impact of long-term commodity cycles (up to 50 years) 

that are also relevant for energy scenarios. Instead, we analyze the distorting ‘noise’ 

produced by medium-frequency dynamics within the conventional business cycle.  

This study takes up the discussion of the connection between business cycles and 

electricity markets, and examines the impacts of economic discontinuities. The approach 

introduced therein focuses on changes in electricity consumption as a result of changes 

in GDP growth, as well as on the volatility of major energy commodity prices and emission 

allowances.  

Many optimization models are constrained by the conditions of perfect foresight based on 

complete knowledge of future technological deployment [38], production costs, fuel prices 

and economic growth – and not least because scenarios extrapolate the historical 

experience and tend to inadequately anticipate long-term developments [39,40]. Van 

Vuuren & O’Neill [41] find deviations from current trends in population and the economic 

growth of IPCC scenarios when they verify them with the historical data. Since then, new 

methods of scenario development for large modelling exercises have been elaborated 

[4,26,42], and have improved researchers’ interpretation of the scenarios as well as their 

understanding of the limitations of cost-optimization modelling [25]. These studies focus 

on the long-term developments (i.e., with horizons of 50 or 100 years) in energy or 

electricity markets. In this framework, systemic structural biases can occur due to 

underestimation of the pace of growth. In the short-term, however, bias also arises from 

the linearized assumptions of the input data. 
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Fig. 2 (a) depicts changes in energy carrier prices and emission allowances for the period 

under consideration (2005 to 2014), which shows volatility that was caused not only by 

the financial crisis of 2008 and the productivity crisis of 2009, but also by the introduction 

of the EU’s emission trading system (ETS) in 2005. Controversial regulations pertaining 

to the two phases of ETS between 2005 and 2012 and uncertain CO2 certificate prices 

led to the distortion of investment incentives for fossil fuel generators [43]. 

  
(a) (b) 

Fig. 2. (a) Changes in main input factors: gas and hard coal prices [2014 EUR], CO2 certificate prices. 
(b) Changes in GDP and specific electricity consumption (final electricity consumption per EUR GDP). 

Sources: EUA price 2005-2008: Trends and projections in the EU ETS: [44]; EUA price 2009-2014: 
[45]; [2014 EUR] coal and gas: BP Statistical Review of World Energy [6].  

Fig. 2 (b) describes the development of the final electricity consumption per unit of GDP, 

characterising changes in the electricity demand for the production of goods and services. 

The dashed lines on both graphs (a, b) represent linearized developments within either 

one 10-year or two 5-year periods. These periods are analogous to the assumptions of 

cost-optimization models that rely on perfect foresight, where values of GDP and 

electricity demand for the end of the periods are assumed to be known and are given 

exogenously.  
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The main question examined by this paper is how much information can be expected to 

be lost through the application of linear and/or persistent growth trends in energy prices, 

economic growth and electricity demand. Furthermore, the effects of business cycles on 

effective energy and climate-policy design are explored. Electricity demand and economic 

factors as fuel prices or economic growth are the key drivers of uncertainty in the long-

term modelling of liberalised electricity markets, see e.g. Möst & Keles [46]. By applying 

a decomposition analysis, we assess the intrinsic causes of changes in CO2 emissions 

between the scenarios. We assess how the selection of the length of periods and 

information on existing dynamics can improve the interpretation of the results. We 

measure precision by comparing the differences between the historical development and 

model simulations.  

3 Methodology  

3.1 Model specifications 

A ‘learning-from-the-past’ approach contributes to the assessment of scenario generation 

through the use of partial equilibrium bottom-up techno-economic models. This study 

applies the Electricity Market Model for Europe (EMME) [47], which is a linear optimization 

model featuring twenty-eight individual states of the EU plus Switzerland and Norway. It 

models both dispatch and investment by minimising total system costs (overall variable 

generation costs and investment costs) subject to electricity demand and a set of technical 

constraints. Equation (1) is an objective function typical for bottom-up partial equilibrium 

models of the wholesale electricity market:  
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min 𝐶𝑜𝑠𝑡 = ∑[𝑃𝑟ℎ,𝑖,𝑑 ∙ 𝐶𝑠𝑡𝑖,𝑑
𝑣𝑎𝑟]

ℎ,𝑖,𝑑

+ ∑[(𝐺𝑖,𝑑
𝑖𝑛𝑣 ∙ 𝐶𝑠𝑡𝑖,𝑑

𝑖𝑛𝑣) + (𝐺𝑖,𝑑 ∙ 𝐶𝑠𝑡𝑖,𝑑
𝑓𝑖𝑥

)]

𝑖,𝑑

 ∀ ℎ, 𝑖, 𝑑 (1) 

Equation (2) describes the energy balance constraint, where exogenously given demand 

𝐷ℎ,𝑖,𝑑 must be satisfied at each hour and in each region, with the left side of the equation 

equal to the supply in each region 𝑑 for each hour ℎ. The demand is price-inelastic, and 

is given as hourly time series. The supply is the sum of production 𝑃𝑟ℎ,𝑖,𝑑 from all power-

plant technologies, plus the sum of imports 𝐼ℎ,𝑘,𝑑 from 𝑘 to 𝑑, minus the sum of exports 

𝐼ℎ,𝑑,𝑘 from 𝑑 to 𝑘. In Equation (5), the amount of imports and exports is constrained by the 

interconnector net transfer capacities (𝑁𝑇𝐶𝑘,𝑑 and 𝑁𝑇𝐶𝑑,𝑘), which are published by 

ENTSO-E [9] for each historical year. Note that interconnector line capacities are not equal 

for import and export flows between countries, reflecting the expected maximum volume 

of the flow under the existing network and technical constraints in both systems. Fig. 

3depicts the states considered in the model and offers a schematized representation of 

cross-border interconnection lines. 

In every hour, the production 𝑃𝑟ℎ,𝑖,𝑑 is constrained by the available generation capacity – 

see Equation (3). 𝐺ℎ,𝑖,𝑑 involves production from both installed 𝐺ℎ,𝑖,𝑑
𝑖𝑛𝑠𝑡  and endogenously 

determined invested capacity 𝐺ℎ,𝑖,𝑑
𝑖𝑛𝑣 , which is constrained by the technical availability 𝛼ℎ,𝑟,𝑑 

of the respective dispatchable power plant technologies in Equation (4.1). The amount of 

CO2 emissions is derived from endogenous production per technology, technology-

specific technical parameters and a fuel-type specific emission coefficient. Equation (4.2) 

is the constraint for variable renewable generation defined by exogenous generation 

profiles 𝜑ℎ,𝑣,𝑑 for wind and solar technologies. The hourly electricity price is the shadow 
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price of the demand constraint given in Equation (2), and has a unit measure of 

EUR/MWh. 

 
Fig. 3. Schematic representation of the countries considered and cross-border interconnections in the 
model. 

The model represents the energy-only market, where the hourly electricity price can be 

interpreted as the market-clearing spot price in the respective region under a deregulated 

wholesale electricity market. Dynamic aspects such as electricity storage, technical 

ramping constraints and the operation of the reserve market are omitted for simplicity. 

This allows the model results to be traced, and facilitates their investigation in relation to 

the effect of stylized input data. 

∑ 𝑃𝑟ℎ,𝑖,𝑑

𝑖

+ ∑ 𝐼ℎ,𝑘,𝑑 − ∑ 𝐼ℎ,𝑑,𝑘

𝑘𝑘

= 𝐷ℎ,𝑑 ∀ ℎ, 𝑖, 𝑑, 𝑘 (2) 

 𝑃𝑟ℎ,𝑖,𝑑 ≤ 𝐺ℎ,𝑖,𝑑 ∀ ℎ, 𝑖, 𝑑 (3) 

𝐺ℎ,𝑟,𝑑 ≤ (𝐺ℎ,𝑟,𝑑
𝑖𝑛𝑠𝑡 + 𝐺ℎ,𝑟,𝑑

𝑖𝑛𝑣 ) ∙ 𝛼ℎ,𝑟,𝑑 ∀ ℎ, 𝑟, 𝑑 (4.1) 
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𝐺ℎ,𝑣,𝑑 = 𝐺ℎ,𝑣,𝑑
𝑖𝑛𝑠𝑡 ∙ 𝜑ℎ,𝑣,𝑑 ∀ ℎ, 𝑣, 𝑑 (4.2) 

𝐼ℎ,𝑘,𝑑 ≤ 𝑁𝑇𝐶𝑘,𝑑  ;   𝐼ℎ,𝑑,𝑘 ≤ 𝑁𝑇𝐶𝑑,𝑘 ∀ ℎ, 𝑖, 𝑑, 𝑘 (5) 

where:  

ℎ Specific hour of the year [-] 

𝑖, 𝑣, 𝑟 Technology index for all technologies 𝑖 and for dispatchable 𝑟 and 

variable 𝑣 technologies [-] 

𝑑 and 𝑘 Country indexes, denoting imports 𝐼ℎ,𝑘,𝑑 from 𝑘 to 𝑑, and exports 𝐼ℎ,𝑑,𝑘 

from 𝑑 to 𝑘 [-] 

𝐶𝑠𝑡𝑖,𝑑
𝑣𝑎𝑟 Variable generation costs [EUR/MWh] 

𝐶𝑠𝑡𝑖,𝑑
𝑓𝑖𝑥

 Quasi-fixed annual costs (e.g., labour costs) [EUR/MW] 

𝐶𝑠𝑡𝑖,𝑑
𝑖𝑛𝑣 Investment costs (annuity recalculated from overnight costs) 

[EUR/MWe]  

𝑃𝑟ℎ,𝑖,𝑑 Electricity production [MWh] 

𝐺ℎ,𝑖,𝑑 Total generation capacity [MW]  

𝐺ℎ,𝑖,𝑑
𝑖𝑛𝑠𝑡  Installed generation capacity at the beginning of the period [MW] 

𝐺ℎ,𝑖,𝑑
𝑖𝑛𝑣  Invested generation capacity of gas, lignite and coal [MW]  

𝛼ℎ,𝑖,𝑑 Technical availability factors for dispatchable technologies 𝑖 [-] 

𝜑ℎ,𝑣,𝑑 Exogenous generation profiles for variable technologies 𝑟 [-] 

𝐼ℎ,𝑖,𝑘 Electricity imports from country 𝑘 and 𝐼ℎ,𝑖,𝑑 electricity exports from  

 country 𝑑 [MWh] 

𝐷ℎ,𝑑 Electricity demand [MWh] 
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𝑁𝑇𝐶𝑑,𝑘 Net transfer capacity between two countries from 𝑑 to 𝑘, and 𝑁𝑇𝐶𝑘,𝑑 in 

the opposite direction [MW] 

In the ‘dispatch’ mode, the model was calibrated for the period 2005-2014 so that yearly 

runs delivered results close to reality with regard to the overall dispatch structure (~6 % 

of deviation between the statistic and the output data for each technology type), CO2 

emissions and wholesale electricity prices. In the ‘investment’ mode, the model extracted 

decreases in the installed capacities (divestment) exogenously from statistical data that 

take the vintage structure of power plant stocks into consideration [7,9,48]. The vintage 

structure deployed in the model allowed for an accurate account of respective technical 

factors. In order to exclude disruptions of policy-driven changes in renewable energy 

source (RES) capacities (PV and wind), they were accounted for exogenously. Hence, 

the investment model focused primarily on the capacity additions in gas- and coal-fired 

power plants [43]. Although the expansion of these capacities is, to some extent, also 

driven by energy policies, the authors excluded this association in the study.  

3.2 Scenario specification and key drivers of the analysis 

In order to assess the implications of assuming linear trends for selected key factors 

instead of considering their fluctuations, we analysed the period from 2005-2014. This 

period provided a conclusive overview of business cycles, with economic growth (January 

2005 until May 2008), recession (May 2008 until April 2009), and a stage of timid 

growth/recovery (April 2009 until July 2010) [49]. In our analysis, we focused on the case 

of the German power system. In its efforts towards market liberalization – which target the 

integration of electricity markets – Germany fosters the creation of a single electricity 

market with the strong pursuance of low-carbon environmental policies, e.g. [50,51].  
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In the ‘dispatch’ mode, we aimed to investigate and quantify the effects of high-amplitude 

changes in macroeconomic input parameters within the defined modelling framework. We 

tested the sensitivity of the model for one 10-year (2005-2014) and two 5-year (2005-2009 

and 2010-2014) intervals, assuming a linear growth pattern of the main economic input 

parameters within the respective intervals (see Tab.1). The scenarios applied in this 

framework can be distinguished by their temporal resolution. In a first annual scenario, we 

calculated CO2 emissions as well as wholesale electricity prices in hourly resolution and 

producer surpluses, using historical statistical values for key input factors [6,52]. In a 

second step, we compared this scenario with two scenarios based on averaged data for 

a 1-period scenario (II) and a 2-period scenario (Ia, Ib). 

Tab.1. Key assumptions behind the scenarios 

Scenario Annual changes 
Scenarios with linear growth  

[% p.a.] 

Ia Ib II 
Designation: annual 2-period 1-period 

Time/Period 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2005-2009 2010-2014 2005-2014 
 
Gas price [EUR/mil 
Btu] 

4.1 5.6 5.7 8.2 6.2 6.1 7.6 8.6 8.0 7.0 5.6 -0.7 2.1 

Oil price [EUR/BBL] 53.9 61.8 61.2 74.2 49.7 63.9 85.4 90.8 84.3 75.5 -2.0 8.7 3.8 

Coal price [EUR/t] 43.0 45.6 63.1 104.9 51.3 70.2 88.3 72.6 61.3 57.9 0.02 -5.3 7.1 

Growth rate GDP 
[%] 

0.71 3.7 3.2 1.08 -5.62 4.08 3.66 0.49 0.49 1.60 0.53 2.0 1.37 

Change in installed 
capacity*  
[Δ %, 2005=1] 

HC 0 
LI 0 
G 0 

HC-2.5 
LI -0.6 
GS 2.8 

HC-0.5 
LI 2.5 

GS 3.3 

HC 0.8 
LI 1.8 
G 10.3 

HC-1.3 
LI 2.2 
G 12.2 

HC 2.6 
LI 3.3 
G 15.2 

HC 2.7 
LI 13.3 
G 15.6 

HC 1.4 
LI 10.3 
G 27.9 

HC-0.8 
LI 5.2 
G 29.6 

HC-0.8 
LI 6.2 
G 30.4 

HC -0.32 
LI 0.54 
G 2.9 

HC 0.1 
LI 0.77 
G 3.0 

HC -0.08 
LI 0.67 
G 2.9 

*: HC – hard coal; LI – lignite; G – gas. 

In the investment mode, we tested how these underlying assumptions affected the results 

of the introduced investment model. The investment decision regarding the expansion of 

the generation capacities of gas, coal and lignite power plants was determined on a yearly 

basis. We modelled short-term market equilibrium by following the approach presented 

by Hirth & Ueckerdt [53] and based on the analytical model provided by Stoft [54]. We 

took the 2005 generation fleet as a long-term capacity mix for the 1-period scenario and 
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the 2009 fleet for the 2-period scenario. We adopted the decommissioning plan as 

described in Tab. 1 for each scenario. In the short-term, investment costs of the existing 

capacities were sunk. New investments were added annually and passed on to the next 

year within the period. The evaluation of the short-term profits of generators allowed us to 

discuss the effects of parametric uncertainty on the producer surplus in the Results section 

(see Fig. 9). 

4 Results 

4.1 Results for the German electricity market 

The main model outputs for each scenario differed with respect to the timing and 

magnitude of investments, prices and CO2 emissions (see Tab.1). We experienced 

differences in the distribution of investments within the periods, as shown in Fig. 4 

below. A detailed overview of annual investment patterns is provided in  
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Appendix A. Under the given assumptions, no investment occurred from 2005 to 2009 

for the 2-period scenario that takes into account the developments in fuel prices and 

demand in 2009, and takes this year as a reference point for future projections. The 1-

period scenario showed comparatively lower investments between 2010 and 2014. To 

trace back the underlying reasons, it would be necessary to analyse the data provided by 

the dispatch model more precisely. 

  

(a) Investment in coal-fired capacities in two 
periods (model results). 

(b) Investment in gas-fired capacities in two 
periods (model results). 

Fig. 4. Changes in coal and gas capacity investment patterns. 

A simplification of the main input parameters describing the evolution of fuel prices and 

prices for emission allowances directly affected the composition of generation costs for 

the different power plant types. Consequently, their position in the merit-order changed 

significantly, resulting in a shift in the corresponding full-load hours. This can be illustrated 

by investigating generators´ typical mid- and peak-load variable costs for the year 2008, 

as depicted in Fig. 5. A decrease of 11 % and 21 % in generation costs (in the 1-period 

and 2-period scenarios, respectively) for a typical mid-load generator (a) resulted from a 

change in fuel prices (see Fig. 2). These averaged values did not capture the high spike 

in coal and gas prices, which was accompanied by high prices for allowances at the 

beginning of the second ETS period. For base-load coal-fired power plants, this difference 

[MW] 7,717 

[MW] 5,664 

2005-2009 2010-2014 
1 period 2 periods 

[MW] 3,162 
[MW] 1,885 

2005-2009 2010-2014 
1 period 2 periods 
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varied more strongly than for gas-fired power plants (b), since the relative share of 

emission costs (in the form of ETS certificates) within the overall generation costs was 

higher. By considering two time periods, the resulting generation cost assumptions for 

mid- and peak-load power plants converged substantially closer to the annual data than 

the 10-year averages. On the one hand, the divergences of actual and modelled 

generation costs could lead to a major overestimation of profit opportunities for generators 

or, on the other hand, an underestimation of future wholesale electricity prices. This 

relationship might lead to false assessments of investment incentives for certain 

generation technologies.   

  

  
(a) Average variable costs (EUR/MWh) for 
typical mid-load power plants (hard coal). 

(b) Average variable costs (EUR/MWh) for 
typical peak-load power plants (CCGT). 

Fig. 5. Decomposition analysis of changes in the variable generation costs for the three scenarios in 2008. 

The structure of the generation mix and technology-specific investment costs in 

combination with variable costs were the major drivers for investment decisions – 

given the assumption of perfectly competitive electricity markets. The illustrated 

changes in the variable generation costs due to different assumptions on fuel and 

environmental costs determined the combined effect on the electricity price. To 
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emphasize the difference between the three scenarios, we considered average 

wholesale prices for each year of the time-period in question (see Fig. 6). The 

annual scenario delivered prices that were close to statistical spot market data. 

The spot market price was at the highest point in the time period in 2008, reflecting 

the combined impact of changes in fuel prices and emission allowances. The 1-

period and 2-period scenarios were not able to capture these dynamics. (For 

annual average wholesale electricity prices, refer to  
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Appendix A.) Changes in the cumulative CO2 emissions inside the defined time-periods 

were another source of misinterpretation in the long-term scenarios. Fig. 7 presents the 

CO2 emissions for the three scenarios. While the 1-period scenario largely exceeded the 

annual scenario’s emissions, the 2-period scenario underestimated the amount of CO2 

emissions. The illustrated discrepancy was a result of diverse assumptions on the main 

input parameters that smoothed developments in commodity prices, demand, changes in 

the expansion of the generation mix, economic growth, and trade between the regions.  

  
Fig. 6. Distribution of annual average electricity 
prices in three scenarios for each year between 
2005-2014, where the ‘o’ and a horizontal band 
inside the box denote the average and the median, 
respectively. 

Fig. 7. CO2 emissions from fuel combustion for 
electricity generation in three scenarios, where 1-
period and 2-period scenarios are given as ratios 
to the annual scenario, which is set to 1. 

In order to investigate the reasons behind the changes in the CO2 emissions presented in 

Fig. 7, we applied a decomposition analysis. Our analysis was based on the Logarithmic 

Mean Divisia Index (LDMI) approach described by Ang [55], while the additive 

decomposition analysis model implemented in the current study related to the approach 

introduced by Karmellos et al. [56]. The combined effect of all factors on the total change 

in CO2 emissions 𝐶𝑡 defined in Equation (6) provided a perfect decomposition analysis 

without leaving residual terms in Equation Fehler! Verweisquelle konnte nicht 
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gefunden werden.. It accounted for the activity effect 𝐴𝑡 that reflects changes in electricity 

consumption due to changes in economic growth. The electricity intensity effect 𝐼𝑡, 

explained as the ratio of electricity consumption to GDP, describes the increasing or 

decreasing share of electricity used for domestic production. The electricity trade effect 𝑇𝑡 

categorizes a country as a net exporter if 𝑇𝑡 > 1, and as a net importer if 𝑇𝑡 < 1. The 

energy efficiency effect 𝑒𝑖,𝑡 shows how technology-specific changes in the energy 

efficiency of the generation sector benefit from a decrease in CO2 emissions. This effect 

is highly sensitive to the technological data of each power plant type featured in the model 

and to the assumed vintage structure. 

𝐶𝑡 = 𝐴𝑡

𝐸𝐶𝑡

𝐴𝑡

𝐸𝑃𝑡

𝐸𝐶𝑡
∑

𝐹𝑖,𝑡

𝐸𝑃𝑖,𝑡
𝑖

= 𝐴𝑡𝐼𝑡𝑇𝑡 ∑ 𝑒𝑖,𝑡

𝑖

 (6) 

where:  

𝑡 Index for the time period [-] 

𝑖 Index for the generation technology [-] 

𝐶𝑡 Total change in CO2 emissions [Mt] 

𝐴𝑡 Gross domestic product (GDP) for year 𝑡 [billion 2014 EUR] 

𝐼𝑡 Electricity intensity effect [GWh/ billion 2014 EUR] 

𝑇𝑡 Electricity trade effect for year 𝑡 [-] 

𝐸𝐶𝑡 Electricity consumption [GWh] 

𝐸𝑃𝑡 Total electricity production in the country from all sources [GWh] 

𝐸𝑃𝑖,𝑡  Electricity generated from fuel 𝑖  

𝐹𝑖,𝑡 Amount of fuel input 𝑖 for a respective generation type [GJ] 
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The derivation of these individual effects can be calculated with the use of logarithmic 

mean weight functions (see Appendix C). The change in CO2 emissions between the base 

year (here 2014) and year 𝑡 was broken down into the four drivers described above, as 

given in Equation Fehler! Verweisquelle konnte nicht gefunden werden.: 

∆𝐶0−𝑡 = 𝐶0 − 𝐶𝑡 = ∆𝐴0−𝑡 + ∆𝐼0−𝑡 + ∆𝑇0−𝑡 + ∆𝑒0−𝑡 (7) 

The results of the decomposition analyses for the three scenarios for each year relative 

to the base year 2014 are presented in Appendix C. Considering the pattern of CO2 

emissions given in Fig. 7, the year 2009 revealed a dramatic difference between the 1-

period and the annual scenario. However, since 2009 represented a benchmark year for 

the calculation of the average growth rates for the 2-period scenario, it was unsuitable for 

the decomposition analysis (see Tab.1). Thus, the year 2008 was used for the illustration 

of the decomposition effects (see Fig. 8).  

 

Fig. 8. Decomposition of changes in CO2 emissions from fuel combustion in the electricity sector, 
comparing 2014 (0) to 2008 (𝑡). 

The change in the activity effect ∆𝐴0−𝑡 in 1-period and 2-period scenarios had a higher 

impact on the increase in CO2 emissions in 2008 relative to 2014 than the annual scenario. 

This was an effect of averaging the GDP growth from 2005 to 2009 (0.53 % p.a.), and 
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from 2005 to 2014 (2 % p.a.). At the same time, the nominal GDP grew steadily from 2005 

(2.4 billion 2014 EUR) to 2008 (2.6 billion 2014 EUR), and dropped by 6.7 % in 2009, 

almost returning to the level of 2005 [7]. The exclusion of this discontinuity in the 

measurement of economic growth had a significant effect on the estimation of the 

cumulative emissions in the period 2005-2014. Another substantial aspect was highlighted 

by the change in the electricity trade effect, ∆𝑇0−𝑡. In the period 2005 to 2014, Germany’s 

electricity exports to neighbouring countries increased constantly: thus ∆𝑇0−𝑡 was negative 

when comparing the base year 2014 with 2008. Considering the average price 

developments shown in Fig. 6 for the 1-period scenario, the trade effect was nearly 47 % 

less than for the annual scenario. Model results indicated that the price effect stimulated 

domestic electricity production. As a result, exports increased and CO2 emissions in the 

exporting country increased significantly. 

  

for a typical gas-fired power plant for a typical coal-fired power plant 

 Fig. 9. Producer surplus. 

Fig. 9 illustrates producer surpluses for the period from 2005 to 2014 (indexed to the annual 

scenario). The results suggest that surpluses for gas- and coal-fired power plants have 

not been captured sufficiently by the presented model setting. The misinterpretation of 
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model results that reveal potential losses or gains for producers – but which do not reflect 

the actual market conditions – may lead to inaccurate projections of future capacity 

expansions, to altering the attractiveness of certain technology types, or to the rejection 

of possible windows of opportunities for niche technologies.   

4.2 General policy remarks 

An inaccurate estimation of producer surpluses (as shown in Fig. 8) for specific generation 

technologies might lead to false conclusions with regard to the future need for policy 

intervention. The timing and implementation of environmental regulations significantly 

affect investment decisions as well. The combined effects of policies and market design 

shape the investment decisions of electricity generators. Therefore, if disruptions in 

macroeconomic factors are not taken into consideration, policy measures aimed at energy 

transition may not be conceived in time, or may be insufficient. 

Economic shocks as a source of changes in key macroeconomic variables like economic 

growth and interest rates, impact both the supply and the demand side of energy systems. 

This study focused its analysis on Germany as an example case. However, the identified 

implications are valid for a wider range of countries. In the period under consideration 

GDP development showed a similar trend. Additionally, European energy markets are 

highly integrated, where prices for energy carriers in different countries move comparably. 

Convergence of oil and gas prices at the European market has a long-term evidence 

[57,58]. An exception are lignite markets that are stronger regionalized than the markets 

of energy carriers (see [59]). Lignite prices are more dependent on regional and national 

developments, than natural gas, coal and oil. On the contrary, hard coal prices at the 

European borders follow the changes in oil prices [60]. However, the strength of specific 
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impacts may vary across different countries, due to the structural differences of the 

respective markets. Fig. 9 presents absolute percentage changes in CO2 emissions of 

electricity generation for the 1-period and 2-period scenario in relation to the annual 

scenario for several European member states. 

  
1-period relative to the annual scenario [%] 2-period relative to the annual scenario [%] 

Fig. 10. Absolute changes in the CO2 emissions between the annual refenrence scenario and 1 and 2-
period scenarios for 2009-2014. See the data behind the graphs in the Appendix D. 

Taking into account this aspect may be important in the assessment of carbon budgets 

on the EU level. Fig. 10 shows, that the 1-period scenario results in a larger deviation of 

total CO2 emissions, than the 2-period scenario. 

Considering the pattern of CO2 emissions for the period studied, our results suggest that 

carbon budgets will not be described sufficiently by analogous modelling frameworks. In 

the presented period, the divergence of the overall CO2 emissions of the 1-period and 2-

period scenarios from the annual scenario amounts to approx. +114 Mt and -82 Mt, 

respectively. The divergence between the scenarios can be gasped by estimating the root 

mean square error (RMSE) – the results are presented in the Table D.2 of the Appendix D. 

The approach of assuming linear growth rates for key parameters promotes a misleading 

picture of the techno-economic background, overlooking the need for emerging 

technologies in order to achieve certain environmental goals (e.g., meeting CO2 budgets). 
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The inaccuracies experienced might result in ineffective policy measures based on the 

gaps between the expected and actual generation costs, fuel prices, electricity demand 

and economic growth. As a consequence, if dynamic economic developments are not 

taken into consideration during the policy planning process, the need for further policy 

intervention in order to shape the design of the future electricity sector can be drastically 

misjudged. Consequently, the design of energy policy measures based on modelling 

frameworks may prove inefficient or ineffective if economic disturbances are not 

considered within the scenario analysis. While we are not able to precisely predict 

forthcoming economic disruptions, we do know that they will occur. Thus, for future 

policies it is necessary to have a better understanding of how to interpret long-term 

scenarios for power markets to take into account abrupt changes in the pace of economic 

growth.  

5 Concluding remarks 

Long-term projections for energy markets in general – and for the electricity market in 

particular – can be improved by incorporating the effects of major economic disruptions. 

Thus, a better understanding of the interpretation of modelling results can be formed by 

considering those disruptions in scenario studies. By investigating the response of the 

German power market to the to the last significant economic downturn, this work 

contributes to a comprehensive understanding of long-term risks, their possible sources 

and the magnitude of their impacts.  

As we highlighted in the motivation section, the question of how uncertainty affects energy 

systems or commodity markets, is highly discussed in the literature. Jurado et al. [13] 

define uncertainty as the aggregate conditional volatility of many economic parameters 
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against unforecastable event – uncertainty (iii) in the classification cited above. Joëts, 

Mignon & Razafindrabe [29] conclude with estimating a transmission of this uncertainty to 

commodity markets. Energy scenarios usually take into account uncertainty that can be 

estimated via probabilities – risk and uncertainty (ii) [21,46]. This paper focuses on 

electricity system with an emphasis on the German power market, evaluating the effect of 

volatility from an already known uncertainty and can bring in an argument for an 

assessment of scenarios in the future. Modelers should pay more attention to an 

appropriate time resolution and assessment of short-term non-linear behavior of input 

parameters if there is a positive tradeoff between workload and pragmatic research 

objectives.  

By implementing statistical data from the economic crisis in 2008 and by assessing its 

implications for the German power sector, this study provides novel insights into the 

impacts of economy-wide disruptions on energy systems. We conclude that the validity of 

policy assessments based on scenario studies for energy systems can be improved if the 

occurrence of such events is taken into consideration.   
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Appendix A 

Investment patterns  

 

Fig. A.1. Investment in coal-fired capacities in the period 2005-2014 (model results). 

 

 

Fig. A.2. Investment in coal-fired capacities in the period 2005-2014 (model results). 

 

 
Fig. A.3. Investment in gas-fired capacities in the period 2005-2014 (model results). 
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Fig. A.4. Investment in gas-fired capacities in the period 2005-2014 (model results). 

Appendix B  

Average electricity prices 

 

Fig. B.1. Average electricity prices (model results). 

Appendix C 

Decomposition analysis 

LDMI formulae for decomposing changes in the power sector given in the Equation (7) 

calculated according to the LDMI method described in Karmellos et al. [56] applies 

logarithmic mean weight functions to estimate separate effects on the change in CO2 

emissions: 

∆𝐴0−𝑡 = ∑
𝐶𝑡 − 𝐶0

𝑙𝑛𝐶𝑡 ∙ 𝑙𝑛𝐶0
∙ ln (

𝐴𝑡

𝐴0
) 

(8) 

∆𝐼0−𝑡 = ∑
𝐶𝑡 − 𝐶0

𝑙𝑛𝐶𝑡 ∙ 𝑙𝑛𝐶0
∙ ln (
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) 

(9) 
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∆𝑇0−𝑡 = ∑
𝐶𝑡 − 𝐶0

𝑙𝑛𝐶𝑡 ∙ 𝑙𝑛𝐶0
∙ ln (

𝑇𝑡

𝑇0
) 

(10) 

∆𝑒0−𝑡 = ∑
𝐶𝑡 − 𝐶0

𝑙𝑛𝐶𝑡 ∙ 𝑙𝑛𝐶0
∙ ln (

𝑒𝑡

𝑒0
) 

(11) 

These Equations (8-11) have a unit value [Mt of CO2] and give representation of the 

magnitude of each effect caused by parametric changes in the described scenarios. The 

tables bellow shows the individual effects (C.1-3)   

Tab. C.1 Results of the decomposition analyses of changes for the annual scenario.  
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

∆𝑪𝟎−𝒕 -91.8 -46.5 -13.3 -49.3 -57.3 -27.6 -18 19.3 9.84 0 

∆𝑨𝟎−𝒕 -23.8 -19 -12.9 -9.54 -21.6 -14.2 -6 -5.26 -3.95 0 

∆𝑰𝟎−𝒕 27.4 25.4 20.4 15.7 15.1 22.8 11.7 11.6 8.93 0 

∆𝑻𝟎−𝒕 -71.8 -50.6 -23.2 -49.5 -48 -35.4 -23.2 9.36 3.07 0 

∆𝒆𝟎−𝒕 -23.6 -2.28 2.42 -5.96 -2.72 -0.79 -0.58 3.55 1.79 0 

Σ -91.8 -46.5 -13.3 -49.3 -57.3 -27.6 -18 19.3 9.84 0 

Tab. C.2 Results of the decomposition analyses of changes for the 1 period scenario.  
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

∆𝑪𝟎−𝒕 -92.6 -63.7 -37.4 -27.1 -16.8 -11.3 8.3 8.1 5.4 0 

∆𝑨𝟎−𝒕 -23.8 -23.0 -21.5 -18.9 -16.1 -13.0 -10.2 -6.8 -3.4 0 

∆𝑰𝟎−𝒕 27.2 26.5 24.7 21.6 18.5 15.0 11.7 7.8 3.8 0 

∆𝑻𝟎−𝒕 -72.2 -53.8 -34.5 -26.3 -18.9 -15.5 4.7 5.4 4.0 0 

∆𝒆𝟎−𝒕 -23.8 -13.4 -6.1 -3.5 -0.2 2.3 2.1 1.6 1.0 0 

Σ -92.6 -63.7 -37.4 -27.1 -16.8 -11.3 8.3 8.1 5.4 0 

Tab. C.3 Results of the decomposition analyses of changes for the 2 periods scenario.  
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

∆𝑪𝟎−𝒕 -92.6 -72.6 -55.4 -55.5 -57.4 -40.6 -7.69 -2.58 0.51 0 

∆𝑨𝟎−𝒕 -23.8 -24.1 -24.1 -22.9 -21.6 -18.1 -14.7 -9.88 -4.97 0 

∆𝑰𝟎−𝒕 27.2 25.7 23.6 20.2 16.6 14 11.3 7.58 3.86 0 

∆𝑻𝟎−𝒕 -72.2 -59.4 -47.1 -47 -49.7 -36.6 -6.9 -2.13 0.63 0 

∆𝒆𝟎−𝒕 -23.8 -14.8 -7.88 -5.85 -2.74 0.16 2.52 1.85 0.99 0 

Σ -92.6 -72.6 -55.4 -55.5 -57.4 -40.6 -7.69 -2.58 0.51 0 
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Tab. D.1 CO2 emissions range in scenarios for the selected EU member states  
 Sum of CO2 emissions 2009-2014 Difference to annual Relative change 

 annual 1-period 2-period 1-period 2-period  1-period 2-period 

state [Mt CO2] [Mt CO2] [Mt CO2] [Mt CO2] [Mt CO2] % % 

AT 38.6 45.5 38.7 6.91 0.08 17.90 0.21 

DE 1,774.5 1,890.3 1,758.5 115.83 -16.00 6.53 -0.90 

DK 69.9 75.6 69.4 5.67 -0.56 8.11 -0.80 

ES 223.2 256.7 215.6 33.55 -7.59 15.03 -3.40 

GB 804.8 852.4 765.2 47.55 -39.66 5.91 -4.93 

IT 521.8 555.1 511.2 33.28 -10.64 6.38 -2.04 

NL 253.6 266.5 257.2 12.95 3.65 5.11 1.44 

PL 663.2 686.5 661.8 23.24 -1.41 3.50 -0.21 

FR 148.4 147.4 143.9 -0.96 -4.49 -0.64 -3.02 

CZ 438.4 439.0 439.7 0.62 1.33 0.14 0.30 

IE 55.5 59.2 56.4 3.68 0.83 6.63 1.49 

 

Tab. D.2 Root mean square error (RMSE) estimated for 1-period and 2-period scenarios relative 
to annual scenario 

 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 RMSE 

CO2 emissions, [Mt] 

annual 225.4 262.1 298.1 256.7 244.8 282.0 282.8 327.2 321.9 315.8  

1-period 231.3 250.0 272.9 284.5 294.4 301.9 328.3 327.9 323.3 315.9 25.5 

2-period 231.3 239.2 253.9 250.3 247.6 264.2 303.9 312.1 316.5 315.9 18.9 

Wholesale electricity price, [EUR/MWh] 

annual 54.28 54.44 46.95 62.99 52.13 49.71 55.05 54.14 50.70 42.61  

1-period 54.68 52.09 50.05 48.21 46.59 45.34 46.30 45.20 44.07 42.61 7.0 

2-period 54.68 53.55 52.95 52.53 52.39 49.86 49.33 47.09 44.92 42.61 5.1 

Electricity generation: coal power plants [TWh] 

annual 100.3 93.4 117.8 82.2 68.8 106.6 89.6 133.6 132.2 127.6  

1-period 102.7 103.3 106.9 110.5 116.8 118.2 137.9 137.8 134.3 127.7 15.2 

2-period 102.7 96.0 91.4 81.1 70.9 84.8 118.2 124.9 128.9 127.7 0.7 

Electricity generation: lignite power plants [TWh] 

annual 113.4 149.3 166.1 153.9 160.5 163.4 172.1 173.3 171.4 172.5  

1-period 115.2 132.5 150.3 157.8 163.0 167.8 170.0 171.0 171.9 172.5 7.7 

2-period 115.2 130.6 148.4 154.7 160.8 165.2 169.2 170.4 171.6 172.5 8.3 

Electricity generation: nuclear power plants [TWh] 

annual 151.7 150.4 150.4 152.5 152.4 152.4 152.4 89.8 89.8 89.9  

1-period 151.7 143.1 135.1 127.4 120.2 113.4 107.0 101.0 95.2 89.9 23.7 

2-period 151.7 151.9 152.0 152.3 152.5 137.1 123.4 111.0 99.9 89.9 12.8 

Electricity generation: gas power plants [TWh] 

annual 37.8 30.1 10.9 34.1 14.0 11.0 28.1 27.2 22.4 17.0  
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1-period 39.8 34.4 27.1 24.3 17.2 16.3 26.3 23.6 19.5 17.0 6.6 

2-period 39.8 31.7 23.7 19.3 15.2 12.0 18.5 18.9 17.4 17.0 7.6 

Electricity generation: wind power plants [TWh] 

annual 25.5 28.6 30.8 33.1 35.7 37.8 40.4 43.5 48.2 54.5  

1-period 25.5 27.8 30.2 32.9 35.8 38.9 42.3 46.0 50.1 54.5 1.5 

2-period 25.5 27.8 30.2 32.8 35.7 38.8 42.3 46.0 50.1 54.5 1.2 

Electricity generation: pv power plants [TWh] 

annual 1.9 2.6 3.8 5.5 9.5 15.8 22.6 29.5 32.8 34.5  

1-period 1.9 2.6 3.6 4.9 6.8 9.4 13.0 18.0 24.9 34.5 5.3 

2-period 1.9 2.8 4.2 6.3 9.5 12.3 15.9 20.6 26.7 34.5 4.0 

 


