001     884118
005     20240711092253.0
024 7 _ |a 10.3390/app10186338
|2 doi
024 7 _ |a 2128/25720
|2 Handle
024 7 _ |a WOS:000580384700001
|2 WOS
037 _ _ |a FZJ-2020-03105
082 _ _ |a 600
100 1 _ |a Kuhn, Bernd
|0 P:(DE-Juel1)129742
|b 0
|e Corresponding author
245 _ _ |a Impact of Thermomechanical Fatigue on Microstructure Evolution of a Ferritic-Martensitic 9 Cr and a Ferritic, Stainless 22 Cr Steel
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1600870138_17524
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The highly flexible operation schemes of future thermal energy conversion systems (concentrating solar power, heat storage and backup plants, power-2-X technologies) necessitate increased damage tolerance and durability of the applied structural materials under cyclic loading. Resistance to fatigue, especially thermomechanical fatigue and the associated implications for material selection, lifetime and its assessment, are issues not considered adequately by the power engineering materials community yet. This paper investigates the principal microstructural evolution, damage and failure of two steels in thermomechanical fatigue loading: Ferritic-martensitic grade 91 steel, a state of the art 9 wt % Cr power engineering grade and the 22 wt % Cr, ferritic, stainless Crofer® 22 H (trade name of VDM Metals GmbH, Germany; under license of Forschungszentrum Juelich GmbH) steel. While the ferritic-martensitic grade 91 steel suffers pronounced microstructural instability, the ferritic Crofer® 22 H provides superior microstructural stability and offers increased fatigue lifetime and more forgiving failure characteristics, because of innovative stabilization by (thermomechanically triggered) precipitation of fine Laves phase particles. The potential for further development of this mechanism of strengthening against fatigue is addressed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lopez Barrilao, Jennifer
|0 P:(DE-Juel1)159139
|b 1
700 1 _ |a Fischer, Torsten
|0 P:(DE-Juel1)161596
|b 2
|u fzj
773 _ _ |a 10.3390/app10186338
|g Vol. 10, no. 18, p. 6338 -
|0 PERI:(DE-600)2704225-X
|n 18
|p 6338 -
|t Applied Sciences
|v 10
|y 2020
|x 2076-3417
856 4 _ |u https://juser.fz-juelich.de/record/884118/files/Invoice_MDPI_applsci-919045_1417.58EUR.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884118/files/Impact%20of%20Thermomechanical%20Fatigue%20on%20Microstructure%20Evolution%20of%20a%20Ferritic-Martensitic%209%20Cr%20and%20a%20Ferritic%2C%20Stainless%2022%20Cr%20Steel%20.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884118/files/Invoice_MDPI_applsci-919045_1417.58EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884118/files/Impact%20of%20Thermomechanical%20Fatigue%20on%20Microstructure%20Evolution%20of%20a%20Ferritic-Martensitic%209%20Cr%20and%20a%20Ferritic%2C%20Stainless%2022%20Cr%20Steel%20.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884118
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129742
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161596
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2019-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL SCI-BASEL : 2018
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2019-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2019-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2019-12-20
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21