000884202 001__ 884202
000884202 005__ 20200914142133.0
000884202 0247_ $$2doi$$a10.1140/epjad/s2005-05-005-y
000884202 0247_ $$2ISSN$$a0939-7922
000884202 0247_ $$2ISSN$$a1431-5831
000884202 0247_ $$2ISSN$$a1434-6001
000884202 0247_ $$2ISSN$$a1434-601X
000884202 037__ $$aFZJ-2020-03115
000884202 082__ $$a530
000884202 1001_ $$0P:(DE-HGF)0$$aHägler, P.$$b0
000884202 245__ $$aHelicity dependent and independent generalized parton distributions of the nucleon in lattice QCD
000884202 260__ $$aHeidelberg$$bSpringer$$c2005
000884202 3367_ $$2DRIVER$$aarticle
000884202 3367_ $$2DataCite$$aOutput Types/Journal article
000884202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600073683_28826
000884202 3367_ $$2BibTeX$$aARTICLE
000884202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884202 3367_ $$00$$2EndNote$$aJournal Article
000884202 520__ $$aA complete description of the nucleon structure in terms of generalized parton distributions (GPDs) at twist 2 level requires the measurement/computation of the eight functions H, E, H˜, E˜, H T , E T , H˜T and E˜T, all depending on the three variables x, ξ and t. In this talk, we present and discuss our first steps in the framework of lattice QCD towards this enormous task. Dynamical lattice QCD results for the lowest three Mellin moments of the helicity dependent and independent GPDs are shown in terms of their corresponding generalized form factors. Implications for the transverse coordinate space structure of the nucleon as well as the orbital angular momentum (OAM) contribution of quarks to the nucleon spin are discussed in some detail.
000884202 588__ $$aDataset connected to CrossRef
000884202 7001_ $$0P:(DE-HGF)0$$aNegele, J. W.$$b1
000884202 7001_ $$0P:(DE-HGF)0$$aRenner, D. B.$$b2
000884202 7001_ $$0P:(DE-HGF)0$$aSchroers, W.$$b3
000884202 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b4$$ufzj
000884202 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b5
000884202 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epjad/s2005-05-005-y$$gVol. 24, no. S1, p. 29 - 33$$nS1$$p29 - 33$$tThe European physical journal / A$$v24$$x1434-601X$$y2005
000884202 909CO $$ooai:juser.fz-juelich.de:884202$$pextern4vita
000884202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b4$$kFZJ
000884202 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000884202 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-02-27$$wger
000884202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2018$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-27
000884202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000884202 9801_ $$aEXTERN4VITA
000884202 980__ $$ajournal
000884202 980__ $$aEDITORS
000884202 980__ $$aI:(DE-Juel1)JSC-20090406
000884202 980__ $$aI:(DE-Juel1)NIC-20090406