000884203 001__ 884203
000884203 005__ 20240529111800.0
000884203 037__ $$aFZJ-2020-03116
000884203 041__ $$aEnglish
000884203 1001_ $$0P:(DE-Juel1)180458$$aSchwab, Alexander$$b0$$eCorresponding author
000884203 1112_ $$a6th International HBS Meeting - Virtual Meeting$$cForschungszentrum Jülich GmbH$$d2020-09-17 - 2020-09-18$$wGermany
000884203 245__ $$aCold moderator systems at HBS
000884203 260__ $$c2020
000884203 3367_ $$033$$2EndNote$$aConference Paper
000884203 3367_ $$2DataCite$$aOther
000884203 3367_ $$2BibTeX$$aINPROCEEDINGS
000884203 3367_ $$2DRIVER$$aconferenceObject
000884203 3367_ $$2ORCID$$aLECTURE_SPEECH
000884203 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1600424515_21835$$xInvited
000884203 520__ $$aThe Jülich High Brilliance Neutron Source (J-HBS) will provide neutrons to differentinstruments by utilizing optimized Target-Moderator-Reflector (TMR) assemblies inthe form of multiple target stations with different pulse structures. These TMR unitsproduce neutrons of the required wavelengths by using different combinations ofmoderators and reflectors. For instruments that require long wavelength neutrons,cryogenic materials are used to slow thermal neutrons down to the cold energyrange. These so-called “cold moderators” are optimized with regard to neutronbrilliance by choosing the appropriate material and dimensions.Two commonly used cold moderators, liquid hydrogen and solid mesitylene, weretested in optimized compact geometries at the Big Karl facility of the synchrotronCOSY at the Forschungszentrum Jülich by conducting neutron time-of-flight (TOF)measurements. The effects of temperature (mesitylene) and ortho-para ratio(hydrogen) on the moderators’ performance were investigated in systematicexperimental parameter studies. The efficiencies of the used cold moderators werecompared and neutron transport simulation models have been validated.With the aim to shift the neutron energy spectrum to even lower values, a coldmoderator system is currently being developed, which allows the use of solidifiedmoderators at operating temperatures below 10 K. For this system, methane will beused in phase II, as it is one of the most promising candidates at such lowtemperatures due to its low-lying energy levels, which allow the transfer of smallamounts of energy. However, the use of solid methane is challenging from anengineering perspective due to its low thermal conductivity and poor radiationresistance.In this presentation, the previously used cryogenic systems will be described and theresults of the measurements at Big Karl will be presented. Furthermore, preliminarydesign aspects of the planned “10 K” cryostat will be discussed.
000884203 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000884203 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000884203 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000884203 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000884203 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000884203 909CO $$ooai:juser.fz-juelich.de:884203$$pVDB
000884203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180458$$aForschungszentrum Jülich$$b0$$kFZJ
000884203 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000884203 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000884203 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000884203 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000884203 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000884203 9141_ $$y2020
000884203 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000884203 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000884203 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000884203 9201_ $$0I:(DE-Juel1)JCNS-HBS-20180709$$kJCNS-HBS$$lHigh Brilliance Source$$x3
000884203 980__ $$aconf
000884203 980__ $$aVDB
000884203 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000884203 980__ $$aI:(DE-Juel1)PGI-4-20110106
000884203 980__ $$aI:(DE-82)080009_20140620
000884203 980__ $$aI:(DE-Juel1)JCNS-HBS-20180709
000884203 980__ $$aUNRESTRICTED
000884203 981__ $$aI:(DE-Juel1)JCNS-2-20110106