000884207 001__ 884207
000884207 005__ 20210130005840.0
000884207 0247_ $$2doi$$a10.7554/eLife.56963
000884207 0247_ $$2Handle$$a2128/25666
000884207 0247_ $$2altmetric$$aaltmetric:87751596
000884207 0247_ $$2pmid$$apmid:32755545
000884207 0247_ $$2WOS$$aWOS:000558758100001
000884207 037__ $$aFZJ-2020-03120
000884207 082__ $$a600
000884207 1001_ $$00000-0001-7761-3727$$aGulban, Omer Faruk$$b0$$eCorresponding author
000884207 245__ $$aImproving a probabilistic cytoarchitectonic atlas of auditory cortex using a novel method for inter-individual alignment
000884207 260__ $$aCambridge$$beLife Sciences Publications$$c2020
000884207 3367_ $$2DRIVER$$aarticle
000884207 3367_ $$2DataCite$$aOutput Types/Journal article
000884207 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600089858_28885
000884207 3367_ $$2BibTeX$$aARTICLE
000884207 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884207 3367_ $$00$$2EndNote$$aJournal Article
000884207 520__ $$aThe human superior temporal plane, the site of the auditory cortex, displays high inter-individual macro-anatomical variation. This questions the validity of curvature-based alignment (CBA) methods for in vivo imaging data. Here, we have addressed this issue by developing CBA+, which is a cortical surface registration method that uses prior macro-anatomical knowledge. We validate this method by using cytoarchitectonic areas on 10 individual brains (which we make publicly available). Compared to volumetric and standard surface registration, CBA+ results in a more accurate cytoarchitectonic auditory atlas. The improved correspondence of micro-anatomy following the improved alignment of macro-anatomy validates the superiority of CBA+ compared to CBA. In addition, we use CBA+ to align in vivo and postmortem data. This allows projection of functional and anatomical information collected in vivo onto the cytoarchitectonic areas, which has the potential to contribute to the ongoing debate on the parcellation of the human auditory cortex.
000884207 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000884207 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000884207 588__ $$aDataset connected to CrossRef
000884207 7001_ $$0P:(DE-HGF)0$$aGoebel, Rainer$$b1
000884207 7001_ $$0P:(DE-HGF)0$$aMoerel, Michelle$$b2
000884207 7001_ $$0P:(DE-Juel1)158043$$aZachlod, Daniel$$b3$$ufzj
000884207 7001_ $$0P:(DE-Juel1)131660$$aMohlberg, Hartmut$$b4$$ufzj
000884207 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b5$$ufzj
000884207 7001_ $$0P:(DE-HGF)0$$ade Martino, Federico$$b6
000884207 773__ $$0PERI:(DE-600)2687154-3$$a10.7554/eLife.56963$$gVol. 9, p. e56963$$pe56963$$teLife$$v9$$x2050-084X$$y2020
000884207 8564_ $$uhttps://juser.fz-juelich.de/record/884207/files/Gulban_etal_2020_elife-56963-v1.pdf$$yOpenAccess
000884207 8564_ $$uhttps://juser.fz-juelich.de/record/884207/files/Gulban_etal_2020_elife-56963-v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884207 909CO $$ooai:juser.fz-juelich.de:884207$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000884207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158043$$aForschungszentrum Jülich$$b3$$kFZJ
000884207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131660$$aForschungszentrum Jülich$$b4$$kFZJ
000884207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b5$$kFZJ
000884207 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000884207 9141_ $$y2020
000884207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELIFE : 2018$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000884207 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884207 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11
000884207 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bELIFE : 2018$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-11
000884207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000884207 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000884207 980__ $$ajournal
000884207 980__ $$aVDB
000884207 980__ $$aUNRESTRICTED
000884207 980__ $$aI:(DE-Juel1)INM-1-20090406
000884207 9801_ $$aFullTexts