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ABSTRACT

Septuple layers of MnBi2Te4 type are important building blocks of magnetic topological insulators and semimet-
als but also examples of two-dimensional magnetic materials with critical temperatures up to a few tens of
Kelvin. Using density functional theory (DFT) we study the exchange interactions in MnBi2Te4, MnBi2Se4,
and MnSb2Te4 films to highlight the importance of higher-order terms and the contributions of relativistic
anisotropic interactions. We also discuss the possibility to induce Dzyaloshinskii-Moriya interaction by gating
with an external electric field.
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1. INTRODUCTION

Due to their novel properties and the high variability allowed by their stacking, two-dimensional materials have
attracted considerable interest in the last decade.1 For spintronic applications, magnetic materials are highly
desirable and indeed several examples have been intensively studied up to now. From the point of view of
magnetic interactions they include Heisenberg-like systems, e.g. Cr2Ge2Te6 where the ordering temperature is
tiny in the monolayer regime2 as well as Ising-like magnets, e.g. CrI3 with a relatively high ordering temperature
of 45 K for the monolayers.3 Still higher values have been achieved in Fe3GeTe2

4 and even room temperature
ferromagnetism was found in VSe2 monolayers.5 Also intrinsically magnetic topological materials like MnBi2Te4
have been found that are layer-wise antiferromagnetic (AFM) in the bulk but can be combined with layers
of similar topological insulators.6 Therefore, it is of substantial interest to study the magnetic interactions in
materials of this type and see how they are altered by their chemical constitution. Since the classical Heisenberg-
type interactions are small7 and not sufficient to stabilize long range magnetic order it is important to study
also higher-order and anisotropic interactions here.8 After a short presentation of the computational details, we
first address non-relativistic interactions, both pair-wise and higher-order terms. Then we study the interactions
that result from relativistic effects and conclude with a short discussion.

2. COMPUTATIONAL DETAILS

We performed self-consistent DFT calculations in the generalized gradient approximation (GGA)9 employing the
full-potential linearized augmented planewave method10 as implemented in the Fleur code.11 The experimental
unit cell parameters as given in Ref. 12 and listed in table 2 were used for the in-plane lattice constants. The
septuple-layer films were relaxed in out-of-plane direction showing a contraction of about 0.4 Å between the
outermost layers and an expansion of about 0.5 Å between the second and third layer. The inner layers show
expansions < 0.1 Å. The planewave cutoff for the basis functions was set to Kmax = 4.0 a.u.−1. The charge
density was expanded up to a cutoff Gmax = 9.4 a.u.−1. We set the muffin-tin radii to RMT = 2.50 a.u., Bi
5d-states were included ad local orbitals. With a focus on applying DFT+U , we assume l = 2, U = 6.0 eV and
J = 0.66 eV for Mn. In the simple unit cell we have used 144 k-points in the full Brillouin zone to achieve a
well-converged charge density. For the calculation of the magnetocrystalline anisotropy a denser grid with 361
points was used. For the 4× 1, 1× 4 and 2× 2 unit cells, we used 4× 14× 1, 7× 6× 1 and 7× 7× 1 k-meshes,
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respectively. For the calculation of the anisotropic exchange interactions in the 2× 1 unit cell a finer 18× 12× 1
grid was employed. For the calculations of spiral spin density waves the generalized Bloch theorem was used.13

In these cases, spin-orbit coupling (SOC) was taken into account using first order perturbation theory.14

3. RESULTS

3.1 Heisenberg-type exchange

We start from a classical spin Hamiltonian with spins Si containing just two-site interactions, i.e. in general

H =
∑

〈i,j〉

SiJ ijSj =





∑

〈i,j〉

′
1JijSi · Sj +

∑

i

SiKiiSi +
∑

〈i,j〉

′
SiJ

s
ijSj +

∑

〈i,j〉

′
SiJ

a
ijSj



 (1)

where underlined quantities indicate 3× 3 matrices and superscripts s and a denote traceless symmetric and
antisymmetric matrices. The summations go over unique pairs and the prime in the sum indicates that i = j
is excluded. In this notation Jij is the isotropic Heisenberg-type exchange, Kii the single-site anisotropy, Js

ij

the pseudo-dipolar interaction and Ja
ij the Dzyaloshinskii-Moriya interaction (DMI). All but the first mentioned

interaction are of relativistic origin and will be discussed later.
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Figure 1. Energy dispersion of spin-spiral states with q-vector along the high symmetry lines MΓ and ΓKM. The data
for MnBi2Te4, MnBi2Se4, and MnSb2Te4 are shown with black filled circles, red squares and blue diamonds, respectively.
The lines in corresponding colors are fits to the data using a Heisenberg model up to the fifth nearest neighbors.

Since spin-spirals, i.e. states where the magnetization rotates from atom to atom by a fixed angle, are
analytical solutions of the classical Heisenberg model, it is convenient to extract the scalar exchange constants
from such spin-spiral calculations that can be conveniently performed using the generalized Bloch theorem.15

As can be seen from table 1 (and was also predicted for bulk MnBi2Te4 in Ref. 7), the exchange is dominated
by the nearest neighbor interaction. The fact that J1 favors a ferromagnetic (FM) interaction was analyzed by
Li et al.,16 who related the strength of the FM interaction in MnBi2Te4 to the position of the unoccupied Bi
p-states. A p-band position close to the Fermi level favors FM order, while artificially pushing the band higher
up resulted in an AFM ground state. To some extent, this trend can also be observed in the comparison of data
shown in table 1 to the densities of states (DOS) plotted in fig. 2: Compared to MnBi2Te4, the larger band



Table 1. Heisenberg exchange parameters for the first five nearest neighbors obtained by a fit based on the classical
Heisenberg model to the spin-spiral energies shown in Fig. 1. The large value of J3 contains in fact a significant contribution
of the nearest-neighbor biquadratic interaction (see subsection 3.2).

Compound S2J1 (meV) S2J2 (meV) S2J3 (meV) S2J4 (meV) S2J5 (meV)
MnBi2Te4 −1.56 −0.03 −0.35 0.03 0.04
MnBi2Se4 −1.39 −0.05 −0.26 0.04 0.06
MnSb2Te4 −1.79 −0.10 −0.21 0.02 0.06

gap of MnBi2Se4 leads to a higher lying local Bi DOS and a reduced exchange constant |J1|. In contrast, the
smaller band gap of MnSb2Te4 correlates with the larger |J1| seen in the antimonide. At the same time, the
position of the occupied Mn d-states also follows this trend: When they are higher (closer to the Fermi level)
|J1| is decreased while a lower d-band leads to a stronger FM interaction. This trend can also be observed in
calculations with different values of the Hubbard-U , where a large U leads to more pronounced ferromagnetism.8
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Figure 2. Density of states (DOS) for MnBi2Te4, MnBi2Se4, and MnSb2Te4. The spin-up and spin-down part are shown
by positive and negative values, respectively. The total DOS is shown in black, the partial Mn DOS in blue and the Bi/Sb
DOS in red.

We conclude here by noting that the above analysis of the exchange couplings, J , was done under the
assumption that only 2-spin terms are relevant. In fact, we will see below that this is not so and contributions
of higher order interactions are responsible for the apparently large value of J3.



3.2 Higher-order interactions

Up to now, we considered two-site (or two-spin) interactions but there is no reason to limit the description of the
magnetic system to these terms. The next terms appearing in a classical spin model are four-spin interactions,
e.g. the biquadratic and the cyclic 4-spin interaction terms

H4 =
∑

i,j

′
Bij(Si · Sj)

2 +
∑

i,j,k,l

′
Kijkl [(Si · Sj)(Sk · Sl) + (Sj · Sk)(Sl · Si)− (Si · Sk)(Sj · Sl)] . (2)

The latter term appears in an analysis of spin 1/2 systems, in systems with higher spins more terms (like the
biquadratic one) are possible:17 Recently, the importance of a 4-spin, 3-site interaction that has the form

H3 =
∑

i,j,k

′
Yijk [(Si · Sj)(Sj · Sk) + (Sj · Sk)(Sk · Si) + (Sk · Si)(Si · Sj)] (3)

was demonstrated for ultrathin Fe films on 4d substrates.17,18

To separate the influence of these higher-order terms from the (usually) larger two-spin contributions, it
is convenient to investigate so-called multi-Q structures, commensurate magnetic structures that result from
a superposition of spin-spiral states (single-Q) that preserves the size of the local spins.19 Since single- and
multi-Q states are degenerate in the Heisenberg model, the energy difference can be traced back to higher-order
interactions.

On the hexagonal lattice, a 3-Q state can be formed from the superposition of three row-wise antiferromagnetic
states (M-point in fig. 1), and – based on DFT calculations – has been proposed to be the ground state for a Mn
monolayer on Cu(111).20 Recently, it was experimentally found for Mn on Re(0001).21 The energy difference
between the 3-Q and the 1-Q state is (in nearest-neighbor approximation):

E3Q(M) − E1Q(M) = −
16

3
S4 (2K1 + B1 − Y1) . (4)

To determine all three constants occurring on the right side of this equation, we need in addition two other
multi-Q states. Two 2-Q structures can be constructed from spin-spirals at 1/2ΓM and at 3/4ΓK, respectively.
These double-Q states are collinear double-row wise AFM structures running in orthogonal directions.22 Also
here, an experimental realization was found for a monolayer of Fe on Rh(111).18 The energy differences are

E2Q(ΓM) − E1Q(ΓM) = −4S4 (2K1 − B1 − Y1) (5)

and
E2Q(ΓK) − E1Q(ΓK) = −4S4 (2K1 − B1 + Y1) . (6)

The energy differences in eqs. 4, 5 and 6 can be obtained from non-collinear calculations with four magnetic
atoms in 2×2, 4×1, and 1×4 unit cells, leading to 2.33 meV, −1.13 meV and −1.18 meV, respectively. Inserting
in the equations above gives S4K1 = −0.04 meV, S4B1 = −0.36 meV, and S4Y1 = 0.01 meV. Although these
values are small, S4B1 is the second biggest term after S2J1 and competing with the S2Jn terms for n > 1 in
table 1. In fact, as mentioned earlier, the B1 term also contributes to the spin-spirals shown in fig. 1 and has
for the lines MΓ and ΓKM the same functional form as J3. Therefore, the large value of J3 in table 1 is in fact
caused by B1.

3.3 Relativistic effects

3.3.1 Magnetic anisotropy

In two-dimensional magnetic systems long range magnetic order is stabilized by anisotropic interactions that can
originate from different sources: dipolar and pseudo-dipolar magnetic interactions or single-site anisotropy. The
dipole-dipole interaction is a relativistic two-particle effect not considered in DFT calculations but can be well
approximated by a classical dipole sum.23 We compare out-of-plane (⊥) and in-plane (‖) configurations and list

the resulting values ∆Edip = E⊥
dip − E

‖
dip in table 2. As expected for a thin film, they indicate a preference for



in-plane magnetization direction. Moreover, these values are in the same order of magnitude as the single-site
or magnetocrystalline anisotropy (MCA), ∆EMCA, that results from spin-orbit interaction. As can be seen, the
presence of heavier elements (Bi, Te) leads to larger values of the MCA compared to compounds with lighter (Sb,
Se) atoms. The influence of the chalcogen atom, neighboring the magnetic atom, is stronger than that of the
pnictogen atom that is in the second nearest layer. In total, these effects result in a negative magnetic anisotropy
energy (MAE), i.e. an out-of-plane easy axis, for MnBi2Te4 and an easy-plane magnetism for MnBi2Se4. For
MnSb2Te4 the effects almost cancel and the MAE vanishes within the error bars of the calculation.

Table 2. In-plane lattice constant, a, spin magnetic moment, M , dipole-dipole contribution to the magnetic anisotropy,
∆Edip, magnetocrystalline anisotropy, ∆EMCA, and total magnetic anisotropy, ∆EMAE, for the septuple-layer films.
Negative (positive) energy values indicate a preference for an out-of-plane (in-plane) easy axis.

Compound a (Å) M(µB) ∆Edip (meV) ∆EMCA (meV) ∆EMAE (meV)
MnBi2Te4 4.33 4.65 0.118 −0.162 −0.062
MnBi2Se4 4.07 4.69 0.145 −0.030 0.115
MnSb2Te4 4.26 4.79 0.132 −0.126 0.006

In situations where the single-site anisotropy is small, anisotropic exchange interactions can make a decisive
contribution to the spin-wave gap that stabilizes magnetic order in two dimensions. In the model employed by
Torelli et al.,24 the gap takes the form ∆ = A(2S−1)+BSNnn where A is the (negative) single-site anisotropy and
B is the difference of the elements in the trace of the exchange tensor, Jzz − Jxx (assuming in-plane anisotropy,
Jyy = Jxx). Our calculations for MnBi2Te4 give Jzz = 1.648 meV, Jyy = 1.628 meV, and Jxx = 1.634 meV, so
that B = 0.017 meV when we average the in-plane values (a small anisotropy is caused by numerical artifacts
from the representation of the exchange correlation potential in our case). These variations are small, but in
the order of magnitude of values reported recently.8 Although the value of B is small, it leads to a significant
increase of the Curie temperature: neglecting B results in TC = 20.5 K, while its inclusion leads to TC = 23.6 K
when we employ the model of Ref. 24. Note, that the J values above include the isotropic exchange interaction
(1.64 meV) that is rather similar to the value obtained without spin-orbit interaction included (1.56 meV).

3.3.2 Dzyaloshinskii-Moriya interaction

Although inversion symmetry excludes the presence of DMI in septuple layers of MnBi2Te4 type, in reality this
inversion symmetry is broken when the layer is deposited on some substrate or embedded in layers of different
composition. Therefore, it is of interest to check how these layers respond to symmetry breaking by an electric
field. Whether this field is actually applied by some electrode or via the chemical environment is here of secondary
importance. In the films of MnBi2Te4 on Bi2Te3 considered in Ref. 6, the presence of Bi2Te3 on one and vacuum
on the other side, a finite DMI is clearly expected.

To simulate the influence of the electric field we make use of the thin-film geometry10 of our method and
modify the vacuum potential to represent two electrodes of opposite polarity placed about 6 Å above the film
surfaces. The electric field is then given by the charges on the electrodes and modified by the dielectric response
inside the septuple layer. We applied fields of 3.89 V/nm and 7.79 V/nm that give a reasonable change of
the work-function on a free surface. Self-consistent spin-spiral calculations were performed with these changed
boundary conditions and spin-orbit effects were included in first order perturbation theory.14

From Fig. 3 it is apparent that EDMI is linear in |q| for long range spin-spirals and we obtain the DMI
spiralization from a fit to EDMI = D

2π |q| + O(q3). (For the relation between D and Js
ij of eq. 1 we refer the

reader to Ref. 25.) For the smaller field of 3.89 V/nm we obtain D = 0.101 meV nm per formula unit (f.u.),
while doubling the field strength leads to D = 0.195 meV nm / f.u., i.e. the DMI grows almost linear with the
field. Although the strength of the induced DMI is not sufficient to change the magnetic ground state of the
film, in combination with the small spin stiffness and anisotropy this dependence indicate the possibility of the
formation of metastable states like skyrmions. Finally, we want to mention that the major contribution to the
DMI in this compound comes from the Bi atoms as the effect of the inner Te and surface Te almost cancel each
other.
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Figure 3. SOC induced variation of the total energy of long wave-length spin-spirals in MnBi2Te4 exposed to an electric
field of 3.89 V/nm (blue diamonds) and 7.79 V/nm (black circles). The q-vector points in ΓK direction. Lines are cubic
fits to the data points.

4. SUMMARY

We analyzed the exchange interactions in septuple layers of MnBi2Te4 type and found that the Heisenberg-type
interactions are dominated by the nearest-neighbor term J1, followed in importance by the biquadratic interaction
B1. Important for the stability of long range order at finite temperatures are anisotropic interactions. Here the
magnetocystalline anisotropy favors an easy axis magnetization (out-of-plane), but for MnBi2Se4 this is almost
compensated – for MnSb2Te4 even overcome – by the dipole-dipole contribution to the magnetic anisotropy.
Anisotropic exchange interactions give a small but significant contribution to the Curie temperature. Finally,
although the DMI is zero for a freestanding septuple layer of these compounds, symmetry breaking by an electric
field (or by embedding the layer in an asymmetric stack) leads to sizable antisymmetric exchange interactions in
MnBi2Te4.

Compared with traditional metallic magnets, where often a few types of magnetic interactions are sufficient
to describe the system, here a wide variety of contributions can be identified that is of relevance – maybe not
so much for the ground state, but for metastable or excited states. We hope that this analysis sharpens the
awareness for more exotic contributions of this kind in the studies of two-dimensional magnetic materials.

ACKNOWLEDGMENTS

We gratefully acknowledge computing time at the JURECA supercomputer from the Jülich Supercomputing
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magnets with the full-potential linearized augmented planewave method,” Phys. Rev. B 69, 024415 (2004).

[12] Eremeev, S., Otrokov, M., and Chulkov, E. V., “Competing rhombohedral and monoclinic crystal structures
in MnPn2Ch4 compounds: An ab-initio study,” Journal of Alloys and Compounds 709, 172–178 (2017).

[13] Herring, C., [Exchange interactions among intinerant electrons, Magnetism Vol. IV ], ed. G. T. Rado,
H. Suhl, Academic Press, New York, London (1966).
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