001     884240
005     20230127125337.0
024 7 _ |a 10.1021/acs.est.9b06983
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a 2128/25860
|2 Handle
024 7 _ |a altmetric:89766810
|2 altmetric
024 7 _ |a pmid:32902267
|2 pmid
024 7 _ |a WOS:000580444600080
|2 WOS
037 _ _ |a FZJ-2020-03139
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Pozzer, Andrea
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States
260 _ _ |a Columbus, Ohio
|c 2020
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602243264_12681
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Observations of volatile organic compounds (VOCs) from a surface sampling network and simulation results from the EMAC (ECHAM5/MESSy for Atmospheric Chemistry) model were analyzed to assess the impact of increased emissions of VOCs and nitrogen oxides from U.S. oil and natural gas (O&NG) sources on air quality. In the first step, the VOC observations were used to optimize the magnitude and distribution of atmospheric ethane and higher-alkane VOC emissions in the model inventory for the base year 2009. Observation-based increases of the emissions of VOCs and NOx stemming from U.S. oil and natural gas (O&NG) sources during 2009–2014 were then added to the model, and a set of sensitivity runs was conducted for assessing the influence of the increased emissions on summer surface ozone levels. For the year 2014, the added O&NG emissions are predicted to affect surface ozone across a large geographical scale in the United States. These emissions are responsible for an increased number of days when the averaged 8-h ozone values exceed 70 ppb, with the highest sensitivity being in the central and midwestern United States, where most of the O&NG growth has occurred. These findings demonstrate that O&NG emissions significantly affect the air quality across most of the United States, can regionally offset reductions of ozone precursor emissions made in other sectors, and can have a determining influence on a region’s ability to meet National Ambient Air Quality Standard (NAAQS) obligations for ozone.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 1
|u fzj
700 1 _ |a Helmig, Detlev
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1021/acs.est.9b06983
|g p. acs.est.9b06983
|0 PERI:(DE-600)1465132-4
|n 19
|p 12423–12433
|t Environmental science & technology
|v 54
|y 2020
|x 0013-936X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884240/files/Pozzer_OilGas_es9b06983_si_001_2020.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884240/files/acs.est.9b06983.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884240/files/Pozzer_OilGas_es9b06983_si_001_2020.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884240/files/acs.est.9b06983.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884240
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2020-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2018
|d 2020-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2018
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21