000884244 001__ 884244
000884244 005__ 20210728135359.0
000884244 0247_ $$2doi$$a10.1103/PhysRevMaterials.4.094407
000884244 0247_ $$2ISSN$$a2475-9953
000884244 0247_ $$2ISSN$$a2476-0455
000884244 0247_ $$2Handle$$a2128/25777
000884244 0247_ $$2WOS$$aWOS:000573307600005
000884244 037__ $$aFZJ-2020-03143
000884244 082__ $$a530
000884244 1001_ $$0P:(DE-Juel1)168434$$aJia, Hongying$$b0$$eCorresponding author$$ufzj
000884244 245__ $$aMaterial systems for FM-/AFM-coupled skyrmions in Co/Pt-based multilayers
000884244 260__ $$aCollege Park, MD$$bAPS$$c2020
000884244 3367_ $$2DRIVER$$aarticle
000884244 3367_ $$2DataCite$$aOutput Types/Journal article
000884244 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627462346_13518
000884244 3367_ $$2BibTeX$$aARTICLE
000884244 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884244 3367_ $$00$$2EndNote$$aJournal Article
000884244 520__ $$aAntiferromagnetically coupled magnetic skyrmions are considered ideal candidates for high-density information carriers. This is due to the suppressed skyrmion Hall effect compared to conventional skyrmions and a smaller size due to the cancellation of some contributions to the  magnetostatic dipolar fields. By means of systematic first-principles calculations based on  density functional theory we search for suitable materials that can host antiferromagnetically coupled skyrmions. We concentrate on fcc-stacked (111)-oriented metallic $Z$/Co/Pt ($Z=4d$ series:  Y$-$Pd, the noble metals: Cu, Ag, Au, post noble metals: Zn and Cd)  magnetic multilayers of films of monatomic thickness. We present quantitative trends of magnetic properties: magnetic moments, interlayer exchange coupling,  spin stiffness, Dzyaloshinskii-Moriya interaction, magnetic anisotropy, and the critical temperature.  We show that some of the $Z$ elements (Zn, Y, Zr, Nb, Tc, Ru, Rh, and Cd) can induce antiferromagnetic interlayer coupling between the magnetic Co layers, and that they influence the easy magnetization axis. Employing a multiscale approach, we transfer the micromagnetic parameters determined from $ab$ $initio$ to a micromagnetic energy functional and search for one-dimensional spin-spiral solutions and two-dimensional skyrmions. We determine the skyrmion radius by numerically solving the equation of the skyrmion profile. We found an analytical expression for the skyrmion radius that covers our numerical results and is valid for a large  regime of micromagnetic parameters. Based on this expression we have proposed a model that allows to extrapolate from the $ab$ $initio$ results of monatomic films to multilayers with Co films consisting of several atomic layers containing 10-nm skyrmions. We found thickness regimes where tiny changes of the film thickness may alter the skyrmion radius by orders of magnitude. We estimated the skyrmion size as function of temperature and found that the size can easily double  going from cryogenic to room temperature.  We suggest promising material systems for ferromagnetically and antiferromagnetically coupled spin-spiral and skyrmion systems.
000884244 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000884244 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000884244 536__ $$0G:(DE-Juel1)jara0197_20191101$$aSystematic investigation of magnetic thin films and multi-layers - towards sub-10nm skyrmions for future data storage devices (jara0197_20191101)$$cjara0197_20191101$$fSystematic investigation of magnetic thin films and multi-layers - towards sub-10nm skyrmions for future data storage devices$$x2
000884244 536__ $$0G:(DE-Juel1)jiff13_20191101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20191101)$$cjiff13_20191101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x3
000884244 588__ $$aDataset connected to CrossRef
000884244 7001_ $$0P:(DE-Juel1)131065$$aZimmermann, Bernd$$b1
000884244 7001_ $$0P:(DE-Juel1)162311$$aHoffmann, Markus$$b2
000884244 7001_ $$0P:(DE-Juel1)174583$$aSallermann, Moritz$$b3
000884244 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b4
000884244 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5
000884244 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.4.094407$$gVol. 4, no. 9, p. 094407$$n9$$p094407$$tPhysical review materials$$v4$$x2475-9953$$y2020
000884244 8564_ $$uhttps://juser.fz-juelich.de/record/884244/files/PhysRevMaterials.4.094407-1.pdf$$yOpenAccess
000884244 8564_ $$uhttps://juser.fz-juelich.de/record/884244/files/main.pdf$$yOpenAccess
000884244 8564_ $$uhttps://juser.fz-juelich.de/record/884244/files/PhysRevMaterials.4.094407-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884244 8564_ $$uhttps://juser.fz-juelich.de/record/884244/files/main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884244 909CO $$ooai:juser.fz-juelich.de:884244$$pdnbdelivery$$popenaire$$pdriver$$pVDB$$popen_access
000884244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168434$$aForschungszentrum Jülich$$b0$$kFZJ
000884244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162311$$aForschungszentrum Jülich$$b2$$kFZJ
000884244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174583$$aForschungszentrum Jülich$$b3$$kFZJ
000884244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b4$$kFZJ
000884244 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
000884244 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000884244 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000884244 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000884244 9141_ $$y2020
000884244 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000884244 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000884244 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000884244 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-03
000884244 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000884244 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000884244 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884244 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000884244 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000884244 920__ $$lyes
000884244 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000884244 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000884244 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000884244 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000884244 980__ $$ajournal
000884244 980__ $$aVDB
000884244 980__ $$aI:(DE-Juel1)PGI-1-20110106
000884244 980__ $$aI:(DE-Juel1)IAS-1-20090406
000884244 980__ $$aI:(DE-82)080009_20140620
000884244 980__ $$aI:(DE-82)080012_20140620
000884244 980__ $$aUNRESTRICTED
000884244 9801_ $$aFullTexts