000884256 001__ 884256
000884256 005__ 20210130005849.0
000884256 0247_ $$2doi$$a10.1029/2019GB006513
000884256 0247_ $$2ISSN$$a0886-6236
000884256 0247_ $$2ISSN$$a1944-9224
000884256 0247_ $$2Handle$$a2128/25699
000884256 0247_ $$2WOS$$aWOS:000576406900018
000884256 037__ $$aFZJ-2020-03151
000884256 082__ $$a540
000884256 1001_ $$0P:(DE-Juel1)177770$$aUhlig, D.$$b0$$eCorresponding author
000884256 245__ $$aMineral nutrients sourced in deep regolith sustain long‐term nutrition of mountainous temperate forest ecosystems
000884256 260__ $$aHoboken, NJ$$bWiley$$c2020
000884256 3367_ $$2DRIVER$$aarticle
000884256 3367_ $$2DataCite$$aOutput Types/Journal article
000884256 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600707095_28605
000884256 3367_ $$2BibTeX$$aARTICLE
000884256 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884256 3367_ $$00$$2EndNote$$aJournal Article
000884256 520__ $$aPrimary productivity of forest ecosystems depends on the availability of plant‐essential mineral nutrients. Because nutrient demand of trees often exceeds nutrient supply from rock, tree nutrition is sustained by efficient reutilization of organic‐bound nutrients. These nutrients are continuously returned from trees to the forest floor in litterfall. However, over millennia nutrient limitation may develop in landscapes from which nutrients are permanently lost by drainage and erosion. Such a deficit is prevented if advection of unweathered bedrock toward the surface as driven by erosion continuously supplies fresh nutrients. Yet the mechanisms and the depth range over which this deep nutrient resource is accessed are poorly known. We show that in two montane temperate forest ecosystems in the Black Forest and Bavarian Forest the geogenic source of nutrients was found within a depth zone of several meters. This deep zone contains a large pool of biologically available nutrients. We applied isotope ratios as proxies for nutrient uptake depth, and we tracked the regolith depth at which the isotope ratios of 87Sr/86Sr and 10Be(meteoric)/9Be match the respective values in plant tissue. We mapped the depth distribution of the biologically available calcium‐bound form of the most plant‐essential mineral nutrient phosphorus and found that the depth of phosphorus availability is as deep or even deeper as the range defined by the isotope ratios. We conclude that nutrient supply from a regolith depth of several meters is critical for forest ecosystem function in landscapes of moderate hillslopes and rainfall that are affected by permanent nutrient loss.
000884256 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000884256 588__ $$aDataset connected to CrossRef
000884256 7001_ $$0P:(DE-Juel1)129427$$aAmelung, W.$$b1
000884256 7001_ $$0P:(DE-HGF)0$$aBlanckenburg, F.$$b2
000884256 773__ $$0PERI:(DE-600)2021601-4$$a10.1029/2019GB006513$$n9$$p1-21  e2019GB006513$$tGlobal biogeochemical cycles$$v34$$x1944-9224$$y2020
000884256 8564_ $$uhttps://juser.fz-juelich.de/record/884256/files/2019GB006513-1.pdf$$yOpenAccess
000884256 8564_ $$uhttps://juser.fz-juelich.de/record/884256/files/Post%20Print.pdf$$yOpenAccess
000884256 8564_ $$uhttps://juser.fz-juelich.de/record/884256/files/Post%20Print.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884256 8564_ $$uhttps://juser.fz-juelich.de/record/884256/files/2019GB006513-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884256 909CO $$ooai:juser.fz-juelich.de:884256$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000884256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177770$$aForschungszentrum Jülich$$b0$$kFZJ
000884256 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b1$$kFZJ
000884256 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000884256 9141_ $$y2020
000884256 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884256 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884256 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGLOBAL BIOGEOCHEM CY : 2018$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884256 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884256 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGLOBAL BIOGEOCHEM CY : 2018$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884256 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884256 920__ $$lno
000884256 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000884256 980__ $$ajournal
000884256 980__ $$aVDB
000884256 980__ $$aUNRESTRICTED
000884256 980__ $$aI:(DE-Juel1)IBG-3-20101118
000884256 9801_ $$aFullTexts