000884257 001__ 884257
000884257 005__ 20220930130251.0
000884257 0247_ $$2doi$$a10.1074/jbc.RA120.013704
000884257 0247_ $$2ISSN$$a0021-9258
000884257 0247_ $$2ISSN$$a1067-8816
000884257 0247_ $$2ISSN$$a1083-351X
000884257 0247_ $$2Handle$$a2128/27135
000884257 0247_ $$2pmid$$a32820048
000884257 0247_ $$2WOS$$aWOS:000588414100012
000884257 037__ $$aFZJ-2020-03152
000884257 082__ $$a540
000884257 1001_ $$0P:(DE-Juel1)169471$$aKolen, Bettina$$b0
000884257 245__ $$aAn amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates
000884257 260__ $$aBethesda, Md.$$bSoc.72889$$c2020
000884257 3367_ $$2DRIVER$$aarticle
000884257 3367_ $$2DataCite$$aOutput Types/Journal article
000884257 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1612871611_17542
000884257 3367_ $$2BibTeX$$aARTICLE
000884257 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884257 3367_ $$00$$2EndNote$$aJournal Article
000884257 520__ $$aExcitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
000884257 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000884257 588__ $$aDataset connected to CrossRef
000884257 7001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b1
000884257 7001_ $$0P:(DE-Juel1)131923$$aFranzen, Arne$$b2
000884257 7001_ $$0P:(DE-Juel1)136837$$aFahlke, Christoph$$b3$$eCorresponding author
000884257 773__ $$0PERI:(DE-600)1474604-9$$a10.1074/jbc.RA120.013704$$gp. jbc.RA120.013704 -$$n44$$p14936-14947$$tThe journal of biological chemistry$$v295$$x1083-351X$$y2020
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Order%20Digital%20Reprints%20Online.pdf
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Status%20Digital%20Reprints%20Online.pdf
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/1-s2.0-S0021925817489022-main.pdf$$yOpenAccess
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Order%20Digital%20Reprints%20Online.pdf?subformat=pdfa$$xpdfa
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Status%20Digital%20Reprints%20Online.pdf?subformat=pdfa$$xpdfa
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Kolenetal.pdf$$yOpenAccess
000884257 8564_ $$uhttps://juser.fz-juelich.de/record/884257/files/Kolenetal.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884257 8767_ $$894282914$$92020-09-17$$d2020-09-17$$ePage charges$$jZahlung erfolgt$$lKK: Mittermaier$$pRA013704$$z1500.00 USD, Order Number 94282915
000884257 909CO $$ooai:juser.fz-juelich.de:884257$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169471$$aForschungszentrum Jülich$$b0$$kFZJ
000884257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich$$b1$$kFZJ
000884257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131923$$aForschungszentrum Jülich$$b2$$kFZJ
000884257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136837$$aForschungszentrum Jülich$$b3$$kFZJ
000884257 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000884257 9132_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000884257 9141_ $$y2020
000884257 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-03
000884257 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000884257 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOL CHEM : 2018$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884257 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-03
000884257 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-03
000884257 920__ $$lyes
000884257 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000884257 980__ $$ajournal
000884257 980__ $$aVDB
000884257 980__ $$aUNRESTRICTED
000884257 980__ $$aI:(DE-Juel1)IBI-1-20200312
000884257 980__ $$aAPC
000884257 9801_ $$aAPC
000884257 9801_ $$aFullTexts